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I. INTRODUCTION

The objective of this research program is to develop a cumulative damage

model for polymer-based, fiber reinforced composite laminates. The ideal

model would contain the effects of loading history, character of the applied

stress (tension, compression, etc.) and ply properties on the effective lami-

nate responses--strength, modulus and life--of an arbitrary symmetric lami-

nate with known unidirectional ply properties. To this end, four major damage

modes are identified for concentrated study in this program. These include

I
matrix-dominant transverse cracking and interlaminar delamination, fiber micro-

buckling under compressive stress, and fiber breaking and splitting under axial

tension in the fiber direction. Generally, one or more of these damage modes

are observed in the process of laminate failure. Analytical studies have been

made in the past to describe the mechanics of each of these damage modes under

conditions of static loads; various theories have been advanced to predict the

onset and progress of these individual damage events. •

The approach taken in this program is to adopt some of the existing

mechanistically augmented damage models and extend them to describe the four

types of damage modes under conditions of arbitrary cyclic loads. 5

This report details the development of a cumulative damage model during

the first phase of the program. Here, only the failure modes of transverse

cracking and delamination are studied. The development of the model is based 9

on the axioms of the classical fracture mechanics and a comprehensive analyti-

cal and experimental correlation effort.

Section II of this report presents a brief survey of literature and back- U

ground review on failure modes, growth mechanisms and modeling approaches for

strength and/or life predictions of polymer-based fibrous composites.

-- i--
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The formulation of the cumulative damage model is presented in Section

III. The static fracture analysis of transverse cracking and edge delami-

nation mechanisms, and the criteria for their initiation and growth under

sustained loading are presented first. The fundamental element of the frac-

ture analysis is the classical concept of energy release rate. This concept

is then extended to describe the initiation and growth processes under con-

stant amplitude cyclic loads. A damage growth rate equation is proposed

which relates the intricate load-cycle-damage relationship. Finally, a cumu-

lative damage model is constructed based on the growth rate equation and the

concept of constant damage states.

Section IV details the experimental study. Four groups of test results

are presented and discussed, including the basic material characterization r

data; static load-damage relations; fatigue load-cycle-damage relations and

damage accumulation under simple spectrum loading conditions. Test speci-

mens are designed so as to reveal separate mechanisms for transverse cracking

and for delamination. Consequently, the most influential physical, geometrical

and loading parameters in each of the damage modes can be identified from the

test data.

A preliminary correlation between the proposed model and the experiments

is conducted on all the aspects of the development. Important results are

presented in Section V. It will be shown that the basic concepts adopted in

the model are physically consistent. The specific form for the proposed dam-

age growth rate equation remains to be adjusted when more experimental data

are obtained in the next phase of the study.

Section VI gives a brief summary of the progress made during the first

phase of this program, and an outline of future directions for the second and

the third phases of the program.
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II. BACKGROUND REVIEW

In the strength analysis of fiber reinforced composite laminates, one

common approach is the well-known "first ply failure" theory (see e.g. Tsai

and Hahn [l]). The basic assumption in the theory is that failure occurs in

the individual plies as an independent event, and it is governed solely by

the inherent ply strength property. When the first ply fails, the load is

carried by the remaining plies, and so forth. Hence, by means of a laminate

stress analysis and some suitable ply failure criteria, a progressive ply-by-

ply failure process is constructed, and the final strength of the laminate

estimated.

This approach does not take into account the actual failure modes in the

plies or between the plies, or the growth nature of any of the failure modes.

But, experimental evidences have shown that failure in laminates involves

complicated intra-layer and inter-layer crackings and their progression. De-

pending on the nature of the applied load, a multitude of failure modes have

been found in composite laminates. For polymer-based graphite fibrous syste-,

for instance, at least four major failure modes have been found as the most

prevalent. These include the matrix-dominant transverse cracking; inter-

laminar delamination; and fiber-dominant microbuckling under compression;

fiber breaking/splitting under tension. In order to effectively use the mater-

ial, a deeper understanding in the intricate mechanisms of these failure modes

is necessary.

Experiments on graphite-epoxy laminates under tension have shown that

fiber-matrix interface cracking and/or interlaminar cracking generally occur

before either fiber breakage or the ultimate laminate failure. Interlaminar

cracking occurs frequently in the form of free edge delamination. The driving

-3-



force in the ,elamination growth is associated -Iith the in L riaminar stresses

that exist near the free edge region of the laminate, Such as the straight

uodge )f a tension coupon [2-6], or the free-edge surface ar a through hole

7-81. These stresses ar>.. highly concentrated near the point where layer in-

terface meets the laminate free edge. The sign and magnitude of these inter-

laminar stresses depend on the stacking sequence and lay-up angles of the lami-

nateos. Hence, some laminates are more prone to delamination than others, de-

peeling on their lamination structure; it also influences the ultimate strength

of thv- laminates [9-12].

T'-. know~edge of the free edge interlaminar stresses provides a physical

x tai,-ntion of the edge delamination phenomenon; a suitable theory defining

t he conditions for its initiation and propagation remains a subject of recent

research. In a series of tests by Rodini and Eisenmann [13] on gra'Thite-epoxy

laminates in the form [t45n/0n/90n]s, n = 1, 2, 3, it is reported that the

critical applied tensile stress at the onset of edge delamination varied with

thc thickness of the material layer. That is, the critical. stress decreased

with the increase of n. The dependence of the critical stress on the material

layer thickness could not be explained by the magnitude of the inter-laminar

stresses alone.

Studies of the transverse cracking mechanisms in laminates have been

equally extensive in recent years [14-16]. Transverse cracks are caused by

the in-plane tensile stress which is normal to the fibers in a given unidirec-

tional material layer. For example, consider a [0/90] s type of laminate under

uniaxial tension; transverse cracks may occur in the 900 -layer once the applied

stress reaches some critical value. Thus, a failure criterion based on ply

stress, such as the first ply failure theory, would predict that the onset

-4-
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stress for transverse cracking is determined by the tensile strength of the

900 -layer. Contrary to the prediction, experiments have shown that the criti-

cal tensile stress, in-situ in the 90*-layer, varies greatly with the thick-

ness of the 90*-layer itself. The general trend is that it increases with the

decrease of the 90*-layer thickness. This layer-thickness effect on the

critical onset stress was first documented by Bader, et. al. [16], who attri- F

buted the effect to the constraining actions from the adjacent 00-layers.

The presence of the 0*-layers not only arrests the transverse crack, but also

restrains or delays it from forming in the first place. They explained that

the physical quantity which controls the transverse cracking mechanisms is

associated with the amount of strain energy stored in the 90*-layer, thus the

thickness dependent effect.

The thickness effect on crack initiation observed both in edge delamina-

tion and transverse cracking has been explained from a probabilistic point of

view (13, 171. In this view, it is assumed that in each material layer there

is a distribution of microdefects and that a similar distribution of defects may

also exist on the layer interfaces. Hence, increasing the thickness (or

volume) of the material layer increases the probability of crack formation

and growth. This reasoning can certainly explain, albeit only qualitatively,

the observed layer-thickness effect. But, any vigorous analysis based on this

approach must address the interrelationships in the stress field, the defects,

coalescence of defects, etc. at the microscopic level. Owing to the extremely

complex microstructure of the composite such an approach is practically unattain-

4 able.

An alternative to the micromechanics approach is to perform a fracture

analysis at a much larger dimensional level, where cracks of size much larger

than the fiber diameter are recognized. It is thought that, within the frame- P
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work of ply elasticity* [1] and the classical fracture mechanics [18], the

initiation and growth processes of transverse cracking and edge delamination

can be modeled.

In a series of recent studies [19-26], Wang, Crossman and co-workers

have taken such an approach and presented a uniiied energy method to study

delamination and transverse cracks in graphite-epoxy laminates. The method

is based on the energy release rate concept [18], that a crack-like flaw can

be propagated when the strain energy release rate near the crack tip is

sufficient to overcome the material's fracture resistance. Thus, the central

ele-rnts in this method are (1) measurement of the material's fracture re-

F ;Lance, and (2) the calculation of the crack-tip strain energy release rate,

the driving force for crack extension.

As in any analytical model construction, idealization and simplification

have to be made in order to reduce mathematical complications. In modeling

the free edge delamination, for instance, Wang and Crossman assumed that the

crack growth is self-similar, or co-planar, whose path is contained in the

interface between two layers. Thus, the growth path is one-dimensional and

the crack front is represented by a point. Similarly, transverse cracks are

also assumed self-similar, with their paths parallel to the fiber-matrix inter-

face of the 900-layer. This idealization makes it possible for a two-dimen-

sional stress analysis with a crack growth simulation by some suitable finite

element technique. The computational routine developed by Wang and Crossman

is based on an earlier work of Rybicki and Kanninen [27], who applied Irwin's

crack-closure method [18] to compute the crack-tip stress intensity factor.

Later, Rybicki, et. al. used the finite element technique to model a free edge

*E,ch of the plies is considered elastic and homogeneous.
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delamination problem [281.

It is noted that the self-similar crack path assumption involves a con-

siderable approximation. For example, the observed crack surfaces of trans-

verse cracks or delamination in graphite-epoxy composites are generally ragged,

and the crack path zig-zag, even when viewed macroscopically. Hence, the

self-similar approximation can be tolerated only in the overall modeling, if

the material property (the material fracture resistance) is measured as a

bulk quantity over a relatively large crack extension area. In this manner,

the physical nature of the crack path can be included in the measurement [26].

More specifically, although transverse cracking and edge delamination are

both matrix-dominant cracks, their individual resistance against crack growth

when measured as a bulk quantity can differ considerably. In a recent experi-

mental study, Cullen [29] and Williams [30] measured the material fracture re-

sistance GIC for respectively, the 0*/0* interface delamination and the 900/900

interface delamination. They reported that GIC for 00/00 delamination is much

higher than that for 90°/900 delamination. They attributed the difference to

the different microscopic crack surface details in these two cases.

Another related problem in the measured material resistance is the possi-

ble matrix yielding that occurs near the crack-tip, especially under some

shearing modes. Vanderkley [311 showed that the total energy release rate

measured under mixed mode (G,) crack action is several times larger than

that measured under a pure mode-I action in a unidirectional graphite-epoxy

composite. Similar findings have been reported by Wilkins [32] and Jurf and

Pipes [33]. Wang, Kishore and Feng [34] showed that G( is monotonically

increasing with the ratio GII/G I.

After these physical questions have been taken into account, the energy
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release rate method developed by Wang and Crossman (26] was tested recently

in an extensive experimental case study. The method is proved to be a viable

alternative also for investigating several other types of sub-laminate r

failure modes, such as fiber splitting in notched unidirectional laminate

under tension [34].

Laminates under compressive loading general exhibit three levels of

failure development: local instability of the fibers known as microbuckling,

delamination of plies leading to ply buckling, and the overall global in-

stability of the laminate. Aside from the global instability consideration

whi-n is structural rather than material in nature, the other two types of

Ocal instability mechanismas are closely associated with the matrix-dominant

properties of the material system. Microbuckling in unidirectional laminates

under compression has been studied by Rosen [35], Davis [36], Wang [37] and

others. The analytical model by Wang [37] considers a section of the fiber

as a bending element on elastic foundation. Microbuckling of the element de-

pends on the initial fiber deflection (from being straight) and the in-plane

shear modulus GLT of the unidirectional system. Inclusion of fiber deflection

enables the computational model to incorporate the non-linear shear behavior

of the composite. The non-linear shear behavior (GLT) reflects not only the

properties of the fiber, the matrix and the fiber-matrix interface, but also

the effect of environmental factors on these properties.

For general laminates of multi-directional plies, local ply buckling has

* , been observed [36]. Wang and Slomiana [38] examined recently the instability

* failure in quasi-isotropic graphite-epoxy laminates, and found that delamina-

tion cracking generally proceeds ply instability. They applied the energy

release rate method discussed earlier to predict the onset of delamination

under compressive loading. Apparently, the energy method proves to be appli-
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cable again in this case.

For laminates containing a large amount of 0' plies, fiber breakage is

usually the predominant failure mode. Recent work by Tirosh [39] showed that

the methods of classical fracture mechanics, especially the energy release

rate concept, may be applied to predict the onset of fiber breakage. This

approach has also been taken to study crack growth in unidirectional laminates

containing some initial notches [40-42].

Apparently, fiber breakage mechanisms in unidirectional composite ex-

hibit a considerable random character. Several statistical models have been

formulated to obtain the strength distribution using a bundle theory with

known strength properties of a single fiber. Rosen [35], Zweben [43],

Harlow [44] and Phoenix [45] are among the notable contributors in the field.

However, a linkage between the statistical models and the fracture mechanics

model has not so far been available.

While a considerable gain has been made in understanding the modes and

mechanisms of damage in composite laminate under static loading, damage modes

under dynamical and/or cyclic loading remain far more perplexing. Generally,

it is believed that static loading and fatigue loading cause similar damages,

although additional effects of cyclic loading must be accounted for, such as

hysteretic heating and load frequency effects, etc. [46]. A review of fatigue

4 damage mechanisms has been given by Stinchcomb and Reifsnider [47].

In a series of laminate damage experiments, Reifsnider, et. al. [48]

showed that, given a type of laminate, there seems to exist a particular dam-

4 age state which is characteristic to that laminate, regardless whether the load

is statically applied or cyclically applied. The stress threshold or fatigue

cycle threshold for a particular damage state to occur seem to be rather deter-

ministic. Similar observations are reported by Wang and Slomiana [38] with
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laminates under compression.

These experimental observations suggest that a deterministic relation-

ship may be found which links the load amplitude-damage-cyclic time, given

the laminate with known unidirectional ply properties and the nature of

loading. Assuming that the mode of damage in a laminate is the same under

static and fatigue loads, then the load-damage-life relation may be estab-

lished through a fracture analysis.

The classical crack growth relation for metals, for example, models the

crack-like damage growth rate under cyclic load in the form:

da= a (AK)

where a = crack size, N = cycles, AK = stress intensity factor ratio, and a

and are empirical constants.

A similar form has been suggested by Owen and Bishops [49] based on their ex-

perimental data on glass-epoxy materials. Wilkins, et. al. [50] suggested

the rate equation:

da =BGn

where a is crack size, G is energy release rate, N is cycles and B and n are

constaaits, for growth edge delamination in graphite-epoxy laminate. G is the

energy release rate associated with the maximum fatigue load.

for growth edge delamination in graphite-epoxy laminate. G is the energy re-

lease rate associated with the maximum fatigue load.

Other similar fatigue growth rate equations have been suggested by Ratwani

and Kan (51], Howe and Owen*[52], Carswell [53], etc. All stemmed from the

classical concept for mptal fatigue studies.

Recently, a more specific growth rate relation has been proposed by Wang

and Slomiana [38] for edge delamination under both tension--tension and com-
0

pression--compression fatigue:

-10-
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-or

da G c-G nN

dN c\G I
cS

This equation, however, was only exploratory since there was not enough

experimental data to verify it more definitely. But the essential feature

of this equation is that the load and geometrical effects are implicitly ex-

pressed in the quantity G, while a, G and 8 are pure material constants.C

Cumulative damage estimation for spectrum loadings can also be derived from

the classical cumulative rule for metals. Wilkins [50], et. al. suggested the

equation:

a = a + E (Bi Gn)oi=l

where i sums over the differing levels of the applied load.

A cumulative rule based on the concept of constant damage lines in the

load-life domain has been suggested by Wang and Slomiana [38] for delamination

growth under spectrum loads. But, again, the concept remains to be developed,

pending more experimental data. 0

The field for fatigue damage growth study remains wide open; there is

not an established analytical model that is applicable to damage development

in composites as widely accepted as those developed for metals.

-11-
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III. DEVELOPMENT OF A CUMULATIVE DAMAGE MODEL

In Section 1, it was pointed out that the main objective of the first

phase of the research program is to develop a cumulative damage model for

two of the four major sub-laminate failure modes. Namely, the initiation

and growth processes of transverse cracking and edge delamination under both

static and fatigue loads will be investigated. As has been discussed in the

preceding section, these two types of failures cannot be described adequately

from the standpoint of the concept of ply strength; rather, the method of

fracture mechanics should be applied in order to simulate the growth develop-

ment of these crack-like failures.

Accordingly, this section will begin with a unified presentation of the

fracture model formulated by Wang and Grossman [26] which models the initia-

tion of transverse cracks and edge delamination under static loads.

By introducing a random distribution of material property, the model is

then extended for multiple transverse cracks under a statically ascending load.

The assumption that the crack-like growth mechanisms are the same in

static and in (constant amplitude) cyclic fatigue loads is used to formulate

a fatigue damage rate equation. This equation provides a deterministic re-

lationship between damage size and cyclic time undcr a given fatigue load.

The growth rate equation is then used to generate "constant damage" lines in

the S-N domain. It will be shown that this latter concept of constant damage

lines forms the basis of a cumulative damage model for laminates subjected

to arbitrary speLtrum loading conditions.

A. "TATIC CRITERION FOR DAiM'AGE INITIATION AND GROWTH

Tle fracture model of Wang and Crossman [26] is based directly on the

* original concept of Griffith [54], who considered a thin, brittle plate under
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uniform tension as shown in Figure 3.1. The plate has a through-crack of

length 2a which is orientated perpendicular to the direction of the applied

stress a. The length of the crack is assumed small compared to the dimen-

sion of the plate; a << L; a << W. Griffith introduced the surface energy of

the brittle material and formulated the criterion according to which the

existing crack begins to propagate unstable. He postulated that an increase

in the crack size causes a decrease in the stored strain energy near the crack-

tip; and the loss of the strain energy is converted entirely into surface

energy. The result is an increase in the free surface area due to the crack

extension.

Let U and U be the total strain energy of the plate with and without
0

the crack, respectively. And, let AU = U0 - U be the loss of strain energy

of the plate due to the presence of the crack. Then, for the existing crack

of size 2a, the Griffith criterion states that the crack begins to propagate

when:

(AU)da > (4y)da (3.1)

where y is the material surface energy of a unit of free surface.

For the Griffith problem (plane stress), AU is given by-

22
AU = T a a (3.2)

2 E

Upon substitution into 3.1, the following dependence of the critical stress

on crack size is obtained:

ac ya 1/2 (3.3) 1
cr a -
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According to the equation 3.3, the :rack of original length 2a remains

unciianged until the applied stress ,i reaches the value 0ven bv 3.3; at this

instant a dynamic process of growth begins.

The Griffith equatio: 3.3 brings upon two impou-tant practical questions.

The first is that, using 3.3, a becomes infinite as a -0 . Of course, no
cr

real material can sustain an infinite stress. In fact, given a plate having

no crack at all, one finds only a finite qrrength for the plate. This con-

Lradiction is circumvented by introducing the concept of inherent material

flaws, which are assumed to exist naturally within the plate. The real

thy'- i J, ientity of the flaws is lost, however, within the framework of the

i.inuum assumption" from which stresses, strain energy, etc. are calcula-

,ed. In reality, the flaws exist, perhaps, at the dimensional level of the

grai i-hondary, or the molecular structure of the material. The macroscopic

effect of these microflaws is then represented by assuming the existence of

a acrocopic crack distribution f(a ) in the plate. The no-crack ultimate
c

strergth 0 of the plate is calculated from 3.3 using the worst flaw of size

?a. in the f(a C) distribution; see figure 3.2. Clearly, the existence of

f(a ) at the macroscopic level can only be viewed as a necessary postulation.c

Another practical question is related to the definition of y, the free

sirfuce energy. Actually, it represents the irreversible work required to

.eate a unit free surface area. For brittle material such as glass, crack

growth as defined by 3.3 has been shown to be quite valid. For most other

structural materials, the crack-tip region usually exhibits some degree of

ducmtiie deformation. Early studies by Irwin [55], Orowan [56] and others led

to the concept of the so-called "quasi-brittle fracture." According to this

concept, equation 3.3 Is also correct for most materials if the quantity y is

repla:,od by the irreversible energy dissipated in the surface region of the

-14-
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crack per unit area of free surface. This last quantity depends on the

ductility or elasticity of the material near the crack-tip; and it is

usually found to be orders of magnitude larger than the theoretically cal-

culated value of the material's free surface energy y.

The foregoing discussions become more relevant when crack-like failures

in composite materials are considered. The fundamental assumptions in the F

Griffith theory must also be properly interpretated for composites whose in-

homogeneity is much larger than that in metals.

As has been discussed earlier, stress analysis for multi-layer lami-

nates can be performed only at the level of layer-elasticity. That is the

individual layer is idealized as a homogeneous medium in much the same manner

as the "continuum" assumption in the theory of elasticity. Consequently, r

when a crack-like failure in this idealized material is analyzed, the same

concern arises in identifying properly the quantity a and the quantity y ifc

the Griffith theory is to be employed. As before, these quantities .I. , be

considered a material property and are measured at the dimensional level where

the stress analysis is performed. As far as composite materials are concerned,

the size of a can be very large, being the worst in the distribution of thec

microflaws f(a ). Similarly, the quantity y has to be the gross value over a
c

sufficiently larger crack surface area, depending on the size of inhomogeneity

and the microscopic details of the crack path.

In this sense, the Griffith equation 3.3 can be generalized to treat

most of the major types of crack growth problems that are found in layered

composites.

Now, consider the quantity AU in 3.1. Since U does not depend on a, the
0

Griffith criterion may be rewritten as:

a T(3.4)
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where S is the total surface energy of the solid in the context of the afore-

mentioned "quasi-brittle" fracture.

The quantity U/a depends on the stress field near the crack-tip, which

in turn depends on the geometry of the crack. It represents the dricing force

in propagating the crack and is commonly referred to as the available strain

release rate, G(a), a function of crack size a. The quantity aS/3a depends on

the microstructure of the crack surface and it represents the resistance of

the material against the crack propagation. For material of uniform property,

DS/Da is independent of a. It is commonly called the critical energy release

rate C , which is equal to 2y in ideally brittle materials.
c

Thus, the Griffith criterion 3.4 becomes:

G(a) > G (3.5)-- c

Accordingly, the development of the classical fracture mechanics rests

upon the calculation of G(a) analytically, and the measurement of G physically.c

Within the framework of the theory of elasticity, G(a) may be calculated by a

number of techniques (detail discussions on these techniques are included in

Appendixes A and B); and G may be measured using several experimental methods.
c

For the two types of sub-laminate failure, namely the 90°-layer cracking

(transverse cracking) and edge delamination, it is assumed that microflaws

exist along the fiber-matrix interface, and the ply-to-ply interfaces. These

flaws are generally of a size in the order of the fiber diameter, whose crack

propagation mechanisms is in the realm of micro-mechanics. Here, it is postu-

lated only thit these microflaws propagate and coalesce into a macroscopic

proportion under a certain critical far field loading condition. The size of
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the cracks at the macroscale depends on the micro-structure of the material

(perhaps also on a host of other material processing factors, such as the

curing process, post-cure handling, etc.). These initial microcracks are

described by an assumed "flaw" distribution, denoted by f(a ). The exact
c

form of f(a c) is generally unknown and is random in nature. It is regarded

here, however, as a known macroscopic material property, along with other

properties such as the stiffness constant, Gc , etc. of the basic material.

Since both the transverse cracking and free edge delamination processes

U
are modeled as one-dimensional self-similar crack propagation, the energy

release rate G(a) in each case can then be calculated by a numerical finiLe

element technique (see Appendix B) as a function of crack size a and the

applied load.

The Griffith criterion of 3.5, when applied to predict the initiation

of the sub-laminate cracks, is replaced by the general statement:

G(a ) > G (3.7)

where ac is the worst in f(a ).

The stability of crack growth following initiation is governed by the

4 conditions:

G(a + Aa) < G ; stable growth (3.8)
c

p

G(a + Aa) > G ; unstable growth (3.9)
c

G(a + Aa) ' G ; neutral growth (3.10)c
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where a (>ac) is the size ot the extending crack for w1i :h tho growth sta-
C

bility is to be determined.

The foregoing conditions form the general criterion for a crack to

initiate and to propagate, pending the determination of G(a) and definition

of G C In the following, the models specializing transver e cracking andc

edge deLamination are discussed in more detail.

(1) Model for Transverse Crack Initiation

Transverse cracks are generally formed in multiples such as illustrated

in figure 3.3. The crack growth geometry for a single transverse crack is

shown in Figure 3.4. The first crack is assumed to have an initial size 2a

Yi, worst flaw in f(a c) for the unbounded 900 -layer. It is further assumed

rhat this flaw is situated in the middle of the 90°-layer. The growth kine-

n,tics is then represented by the finite element model as shown in figure

3.,,+5). Thus, the solution domain is the two-dimensional x-z plane, resulting

in a generalized plane strain deformation field [5). Let the laminate be sub-

jected to a uniaxial tension represented by a far field uniform laminate strain

tic- energy release rate function G(a) is then calculated and expressed by:

-2
G(a) = [C e(a)e x ]t (3.11)

where t is a characteristic length (e. g., thickness of a ply). The coefficient

funiction C (a) is calculated by imposing e = 1, so that C (a) is independent
e x e

of the loading.

Figure 3.5 shows the general behavior of C e(a) for a transverse crack in

the laminate whose 900 -layer thickness is larger than 2a . Note that the crackC

size 2a is ultimately limited by the thickness of the 90°-layer, 2b. The strain

energy release rate is seen to increase initially with the increase of cracking
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size. As the crack approaches the ply interface, the energy release rate

begins to decrease; the rate of decrease depends on the relative rigidity

of the outside layer. Generally, the maximum of G(a) is located at a < b.
m

Similarly, if the laminate is subjected to a uniform temperature drop

of AT, causing a tensile stress in the 90*-layer, then the calculated energy

release rate function for the transverse crack is expressed by:

2
G(4) = [CT(a)AT It. (3.12)

Typical bahavior of CT (e) for a transverse crack is similar to that of

C e(a) shown in figure 3.5. Also, C T(a) has a maximum value at the same am < b.

The entire C T(a) curve is generated numerically by imposing AT = 1, so that

it does not depend on AT.

In practice, all epoxy-based laminates are subjected to some thermal

U
residual loading when cured. The effects of the residual stresses on trans-

verse cracking can be evaluated by simply assuming a uniform temperature

change:

AT = T - TO  (3.13)

00
where TO0 is usually the curing temperature, or the temperature at which the w

laminate is free of residual stresses; T is the temperature for which the

stress is computed.

Thus, when the laminate is loaded by uniaxial tension, denoted by the

far-field strain ex, a combined loading condition must be considered. In

this case, the total energy release rate G(a) is expressed in the form:

1
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0

G(a) = [C e(a)ex2 + CeT(a)e xAT + C T(a)T 2It (3.14)

where

CeT(a) = 2[C e(a).CT(a)]I (3.15)

The growth of transverse cracking is primarily in mode-I, or the open-

ing mode. Accordingly, onset of a transverse crack in the 90°-layer whose

90*-layer thickness is larger than 2a is defined when:
c

G(a ) if b > a (3.16)

c = c, c

With the definition 3.16 for crack initiation, equation 3.14 becomes a

quadratic equation in e, if AT is given. The positive root of e defines
x x

the critical applied laminate stress at onset of the crack:

()r =E(e) (3.17)
Xcr x x cr

where E is the laminate stiffness in the loading direction.
x

Figure 3.6 illustrates the criterion for the onset of transverse crack

graphically. It is seen that G(a c ) at the applied laminate stress given by

3.17 must have a value equal to G l. Once the crack is formed, the available

G(a) > GC for all a > a c. Hence, the growth is unstable, or is dynamical.

The crack is, of course, eventually arrested by the outside constraining layers.

During this unstable crack growth, excess energy is released, represented by

the shaded area in figure 3.6. The effect of the excess energy on the lami-

nate will not be discussed in this report, however.
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In cases where the thickness of the 90°-layer is small, such as the

(0/90/0] laminate, then, b (= one-half the 90 *-ply thickness) is very small.

And, in fact, it may be much smaller than ac, which is a property found in I

unbounded 90°-layer. In this case, the original assumed flaw distribution

f(a ) will be truncated by the thickness of the 90*-layer. Then, for all
c

possible flaws of size less than 2b, the maximum available energy release I

rate G(a) occurs at a = a < b; see figure 3.5. Hence, the onset stress ism

then determined by the criterion:

G(a ) > G C if b < ac (3.18)

Figure 3.7 summarizes graphically the onset criterion for transverse "

cracking in thick 90*-layer laminate and thin 90*-layer laminate. It is

seen that the formation of the crack is unstable in the former, while stable

in the latter. The onset load determined by 3.18 represents, therefore, the •

smallest possible load for the first transverse crack to initiate.

(2) Model for Multiple Crack Formation

The foregoing discussions concerned only the critical condition under P

which the first transverse crack is formed. If the 90°-layer has an ideally

uniform property, then multiple cracks would occur simultaneously at some

regular spacing [15]. This spacing is said to be determined by a shear-lag S

zone [14]. This shear-lag zone is simply the shear stress transfer zone

surrounding a transverse crack. Figure 3.8 illustrates the shear transfer

zone for some [±25/90 n s laminate [26]. It is seen that the shear stress •

along the 250/900 interface is highly concentrated near the root of the trans-

verse crack and it decays rapidly at a distance away from the crack root.
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II

Based on the results shown in figure 3.8 and more generated by Wang

and Crossman [57], the size of the shear-lag zone depends only on the thick-

ness of the 90°-layer. That is the ideal multiple crack spacing is given by:

S = kb (3.19)

whore k is some multiplier suitable to describe the size of the shear-lag zone.

In practice, the definition of the shear-lag zone cannot be precise,

since the shear stress decays exponentially, see figure 3.8. Thus, some

empirical definition for k is necessary. Specific values for k will be dis-

c ;ssed in Section V.

Moreover, the idealized multiple cracking process does not actually

occur in reality. Rather, if the first crack forms at some critical far-field

load, j cr' then the second crack would form at a different location (not

necessarily at the characteristic spacing) at a slightly higher load. Hence,

the density of the cracks is rising with the applied load, such as illustrated

in figure 3.9. Generally, there is no characteristic crack density can be de-

fined by the concept of shear-lag. And, often, the event of multiple crack

formation is interrupted by other sub-laminate cracking event at higher load,

such as edge delamination, or other interface crackings.

Assuming the formation of each transverse crack is the result of an exist-

ing flaw in the 90°-layer, the size and location distributions of the flaws

can then determine the load-crack density relation such as shown in figure 3.9.K But such an approach may require a special probabilistic search method, such

as the Monte Carlo procedure.

To model the development of multiple transverse cracks under increasing

load, it is aissumed here that a saturated crack density n exists for some
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unit length of the laminate. This saturation crack density, nm, is believed

to depend in some manner on the shear-lag distance S = kb. But their exact

relation could not be determined. It is said that in a unit length of the

laminate, there are n initial flaws that eventually become transverse cracks.m

The flaw cumulative distribution function F(a ) takes the form, say, of a

Weibull function:

a
F(a) = 1-exp[ _ac ] (3.20)

Since from the single crack model, for any given a there is an onsetc

stress a determined from the energy release rate criterion 3.16:
cr

G(ac) = GIC (3.21)

Then for the distribution of a in 3.20, a corresponding distribution of the
c

onset stresses F(a ) may be obtained by a numerically procedure.

ccrUpon determining the distribution function F(a cr) the load-crack den-

sity relationship is then given by:

n nmF(a cr) (3.22)

where n is the crack-density function under ascending load and n is saturation
m

crack density. Figure 3.10 illustrates this computational process graphically.

The parameters in the F(ar) function must be determined by fitting some

experimental results, while n may be determined either by experiment or some

empirical rule such as:
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n 1/kb (3.23)
m

where k takes some appropriately chosen value.

(3) Model for Edge Delamination Initiation and Growth

The cracking geometry ot free edge delamination in a symmetrical laminate

is illustrated in figures 3.11 and 3.12. Figure 3.11 shows a mid-plane de-

lamination and the corresponding finite element modeling scheme; figure 3.12

shows a delamination along an interface other than the mid-plane of the lami-

nate. Owing to -he symmetry of the laminate, the cracking action in the former

case is essentially of mode I, while in the latter case the crack action is

:,eraLlv mixed, including modes I, II, and III.

In both cases, the crack is assumed to form along the prescribed inter-

face, and to propagate in self-similar manner toward the interior of the lami-

nate. Hence, the solution domain is the two-dimensional y-z plane, being a

generalized plane strain deformation field.

In order to determine the critical condition for initiation, the energy

release rate curve G(a) is first generated numerically by the finite element

procedure. Since the laminate has more than one interface, it is not generally

possible to decide a prori which interface is going to delaminate under the

applied load. Normally, a free edge interlaminar stress analysis is conducted

first, before any edge delamination calculation. The details of the inter-

laminar stress field then provide some indication as to which one of the inter-

faces an edge crack is likely to occur. Then, a calculation of G(a) for crack

propagation along this selected interface is performed next. Sometimes, there

are more than one possible interfaces which are likely to delaminate; then,

((a) curves for each of these possible crack locations have to be generated.

Furthermore, a mid-plane delamination is of mode I, or opening mode, in a

symmetric laminate; while an off-mid-plane delamination is of a mixed-mode
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case. For the two different modes of delamination, the material resistance

in each case may also be different. Depending on the microscopic details of

the cracking surfaces, the critical energy release rates G for mid-planec

cracking and for off-mid-plane cracking have been shown experimentally to

differ considerably for some unidirectional graphite-epoxy [31-34]. Hence,

S
a trial calculation is usually required to determine just which interface

is the most energetically possible for an edge delamination.

Figure 3.13 shows a typical G(a) curve for a delamination growth along

either the mid-plane, or an interface other than the mid-plane. The general

behavior of G(a) is that it increases rapidly to reach a maximum value at

a = a m. After this point, the value of G becomes essentially a constant, in-

dependent of the crack size a (assuming the width of the laminate is large

compared to the crack size a). The value of a at which G attains its maxi-m

mum, depends on a number of factors. The most notable factor is the layer

thickness of the two adjacent layers on whose interface the delamination

propagates. For example, if G(a) represents the total energy release rate

curve for a mid-plane delamination for the laminates [±45 n/0 n/90 n1, n = 1,

2, 3, then the maximum of G would occur at about a = nt, t being the thick-m

ness of one ply. Hence, the available maximum G in the case of n = 1, for

instance, is much smaller than the available maximum G in the case of n = 2.

This thickness depenence nature of G on layer thickness is not exactlymax

the same as the previously discussed transverse cracking problems. The reason

for the existance of Gmax is also due to the constraining effect of the layer

structure of the laminate.

As in the transverse cracking problems, G(a) curve of an edge delamination

growth can also be expressed in terms of the applied thermal and mechanical

loads:
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G(a) = [C e(a)e x2 + CeTex AT + CT (a)ATIt (3.24)

where the coefficient functions Ce, CT and CeT are defined identically as

those expressed in equations 3.11, 3.12 and 3.15, respectively.

If the computed C(a) is for a mid-plane delamination growth, then the

onset of delamination is defined when

G(ac G1c, if ac < am (3.25)

or

G(am) = G c if a > am. (3.26)

The physical reason for the difference between 3.25 and 3.26 is the same as

in the transverse cracking problems discussed earlier.

If the computed G(a) is for an off-mid-plane delamination growth, then

G(a) so computed would consist three modal parts; the criterion for the onset

of such a mixed-mode crack can thus be similarly given as:

Gac ) = < if(a.27a

G(c G(I, II, III)c' c m (3.27)

or

SGA m )=Ci > a (.8

G( m G (I, II, Il)c i c m (3.28)

Experiments are required to decide the value of Glc and the value of

G (1, 1I, III)c"
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Whichever final growth criterion is used, the growth stability of de-

lamination is theoretically unstable if a < a ; and it is a neutral growth
c m

if a > a . Actually, the delamination growth is generally stable. This is

because the interface flaw size a is not uniform along the specimen; it. isC

always the weakest location where delamination starts first. Thus, loadV must be increased in order to extend the delamination further. As the delami-

nation grows larger, the structural stiffness of the specimen is further re-

duced; and so is the available energy release rate G under the same load.

Onset of edge delamination in most laminates has been observed to occur

very late in the loading process; sometimes the onset load is close to 95%

the laminate ultimate load. Thus, relatively speaking, the edge delamination

growth process is short, compared to the growth development of transverse cracks.

B. Fatigue Growth Model Based on Energy Release Rate

In this sub-section, an effort is made to extend the energy release rate

concept of fracture growth in order to model the crack growth process in lami-

nates under constant amplitude cyclic fatigue load. The objective is to pre-

dict the state of damage in terms of the fatigue load and fatigue cycle.

As far as transverse cracking and delamination are concerned, experimental

observations have shown that the mode of damage remains unaltered whether the

laminate is under static or fatigue inads. The influence of the fatigue load

level merely shifts the damage event with time (fatigue cycle). Figure 3.14

illustrates schematically the development of transverse cracks (in terms of

crack density) under static and fatigue loads. In figure 3.14(a), the crack-

density (n) versus applied load (a) plot is displayed; the one-to-one curve

between n - a can be predicted by the multiple cracking model discussed pre-

viously. In particular, the model identifies explicitly the onset load TC
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I ot the Hirst transverse crack in the n - ci curve.

Now, in figure 3.14(b), similar damage growth curves are shown in the

n - N plane, N being the number of cycles for which the laminate has been

.oaded under the constant amplitude fatigue load cf. Here, it is assumed

that f < oa so that under o some cycles are needed to initiate the first

crack at NTC. Clearly, the effect of the fatigue load is manifested by the

shil:ting of the damage curves along the N-axis.

Similarly, figure 3.15 illustrates the growth development for edge

d,: amination. The behavior of crack growth under static and fatigue loads are

idential to the transverse crack case, except in this case the delamination

Si:t' . is used as a measure of damage.

Thus, the objective here is to define the "damage growth" functions

Frc (o n, N) and F DL(Of a, N), which map the one-to-one damage--load curve

onto the Jamage-cyclu plane.

In order to formulate the "damage growth" functions F and FD, it willTC DL'

be assumed that damage growth is driven by the maximum energy release rate G

each time the fatigue load reaches the maximum amplitude o. The material

esistance against the crack growth is the quantity G . The effect of cycling

i: .pressed by a general growth rate equation of the form:

da ~)d (G/Gc) (3.29)

d N c

where at and p are some constants.

Since the quantity G includes implicitly the fatigue load uf, the size

of crack a, and other geometrical and structuraL factors of the laminate

(stacking Jequonce, etc.), the constant- a and p in the rate equation 3.29
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are essentially material dependent only. The exact value of the constants,

however, must be determined from experiments.

Integration of the growth rate equation yields the damage state as a

function of the fatigue load af (in G) and the fatigue cycle N.

(1) Model for Multiple Transverse Cracks

In the case of transverse cracking, it was assumed earlier that the 900
-

layer of the laminate possesses a flaw distribution F(a c). Under statically

increasing load, each of the a in the distribution becomes eventually a trans-c

verse crack. The total number of such cracks is denoted by n.

Under fatigue load f, and of is assumed less than the onset load TC'

the flaw of size a becomes a full crack in a total of NTC cycles. Thus,c T

from equation 3.29: P

N
full crack NTCp

f da =f T(G/G)PdN (3.30)
a 0 c

c

Since, from fracture mechanics calculation, G is defined for a < a <

full crack, and since a is actually a distribution, equation 3.30 providesc

the needed vehical to calculate the distribution function F(N Tc) from the

given function F(a ).
c

Consequently, the distribution function for the crack density n in the

n - N domain is finally given by

n(N) = nmF(NTC) (3.31)

The onset cycle for the first crack is defined by setting n =1.

An alternative transverse crack growth model may be formulated by pro-

posing a rate equation in terms of the crack density n directly:
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_n a a(G/G )P (3.32)
dN c

Note that the crack density n is eventually bounded by the number n ;

hence, the expression 3.32 may depend on N; that is, the constant p may be a

function of N. Some specific details in this development ar- discussed in

Section V of this report.

(2) Model for Edge Delamination

The initiation of edge delamination is assumed to be caused by the worst

flaw a on the free edge of the laminate. Under load this flaw of size ac c

becomes a recogn-zable delamination crack a*; then, a* continues growth into

a idrge delamination.

Under fatigue load oif (assumed of is smaller than the static onset load

of delamination), the cycles necessary to initiate a free edge delamination

is defined by integrating the growth rate equation 3.29:

N
a da fDLo a(G/Gc)PdN (3.33)

c

Equation 3.33 defines NDL under a given af and some appropriate defini-

tion of a*. The constants u and p are associated with the material property

during the initiation process, which involves some unknown microscopic pro-

cesses such as flaw coalesence mechanisms. This, clearly, makes the deter-

mination of a and p entirely empirical.

Once the delamination starts at the macro-level, a similar growth equa-

tion may again be formulated:

a N
da = a(G/Gc)dN (3.34)

a* N DL
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In the above expression, it is conceivable that the constants a and p

may actually be different from those appeared in 3.33, due to the possible

differences in the initiation processes which is microscopic, and the growth

process which is macroscopically modeled. In particular, for a small size

test specimen, some structural effects emerge as the delamination crack be-

comes larger (such as end-lab constraint, structural stiffness loss, etc.).

It is then conceivable also that the constant may depend on the parameter N.

These points are further discussed in Section V.

Basically, equations 3.30 and 3.31 form the basis for determining the r

damage growth function FTC for transverse cracking, and equations 3.33 and

3.34 form the basis for FDL for delamination. All these are carried out

numerically, of course.

C. A CuMUlative Damage Model

Cumulative damage under spectrum load is here described by a model which

is based on the concept of "constant" damage state. Take, for instance, the

fatigue damage growth function FDL (of, a, N) discussed in the preceding sub-

section. It is assumed that a given state of damage, which is expressed by

the delamination size a, can be induced by some constant amplitude fatigue

load of in N cycles; and it can also be induced by some static load a with-

out cycling. Thus, a a - N relation exists for a given state of damage. And,

this relationship is found through the function of FDL(of, a, N).

Figure 3.16 illustrates this concept by a family of plots in the a - N

domain. The constant damage curves are generated from the damage growth

function FDL. These curves can be compared with experimentally generated

ones to verify the validity of the constant damage concept, and the correctness

of the proposed growth rate equation.
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From the constant damage curves in the u - N domain, the cumulative

damage model is constructed as follows:

Consider the spectrum load history such as shown in figure 3.17(a).

The laminate is subjected to a constant amplitude fatigue load a1 for a1*
period of N1 cycles. The damage at the end of N1 cycles is found at point

A in the a - N domain, figure 3.17(b). The constant damage curve passing

point A is devoted by a1 . Now, the amplitude of the fatigue load is in-

creased to o2 for a period of (N2-NI ) cycles, see figure 3.17(a). Since

the damage in the laminate at the onset of a2 is still a1 , the location

of this damage state is at the intersect of 02 and the curve al, point B.

fhen for a period of (N2-'N1 ) cycles, the damage state in the laminate ad-

vances to C, where the constant damage line a2 passes through. At the end

of N 2 cycles, the fatigue amplitude is lower to 0I again for a period of

(r,3-N2 ) cycles. During this period, the damage state advances from point

D on curve a2 to point E on curve a3.

Since at each level of the fatigue load, the initial damage state is

known, and the number of cycles specified, the damage state at the end of

the cycling can thus be found from the damage growth function FDL. The

final damage is given by:

3 Ni
a E I a (G./G )PdN (3.35)

i=l Ni-I i c
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IV. EXPERIMENTAL PROGRAM

A. Introduction

Our cumulative damage model is based on four major modes of laminate

damage. The overall objectives of the experimental program will be to ob-

tain values of the parameters essential to the theoretical model and to

provide a means for refinement and verification of the model for each of

the four modes of major damage.

The basic approach involves studying specially selected laminates to

gain a basic understanding of the specifics of each mode of major damage.

This also includes a study of the same modes in different laminates and the

effects of mode interactions. An important step in the present work is to

determine the static damage modes and the order of their occurrence. Next,

it must be verified that the same modes and trends occur under cyclic load-

ing conditions. Finally, the individual pieces of the model can then be

tied together for more general laminates under complex loading conditions.

In the present work, the AS3501-6 material system has been chosen for

study. The following laminates have been chosen for detailed examination:

1) Unidirectional P

2) (±45)2
2)s

3) (02/902)s

4) (02/90)
2 3 s

5) (±25/90)
s

6) (±25/902)

7) (±25/903) P

3 s

The goals of the experimental program during this phase of the project

are:
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a) characterize the material;

b) determine the required relationships and parameters for incorpora-

tion into the model; and

c) provide initial verification of the energy release rate model as

applied to the transverse cracking and delamination modes of major

damage.

A series of both static and fatigue tests has been designed using the

above laminates to achieve these goals. Table 4-1 shows the overall design

of the test program. In general, the static tests serve the purposes of I

material characterization (including the determination of the material criti-

cal energy release rate GI,II c and critical flaw size a c) and development of

load-damage (S-a) relations. The fatigue tests serve the purposes of deter- P

mining parameters of the cumulative damage models and of developing both the

load-life (S-N) and load-damage (N-a) relations. All tests in the phase

were conducted at room temperature and humidity level, and all fatigue tests

were tension-tension using three maximum amplitudes and a constant R = 0.1.

In addition to the static and constant amplitude fatigue tests, a brief

series of cumulative damage tests were performed using the (02/902)s, (02/90 3)s

and (±25/90)s laminates.

Panels of all laminates were prepared in-house and cured using the faci-

lities of the Naval Air Development Center according to procedures detailed I

in an approved quality assurance plan. Specimens were obtained from the

panels by using a diamond saw. Typical specimen dimensions are shown in

figure 4-1. "

In the following sections, details and results of the experiments will

be presented. Tables of raw experimental data are included in Appendix C.

-
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B. Material and Laminate Characterization

A series of tests were performed on the unidirectional and (±45)2s

laminates for the purpose of determining the elastic constants of the mater-

ial. A (0) laminate was used for static tensile tests and a (0) laminate
8 1

for compressive tests. All tests were conducted on an Instron Universal

Tester under room conditions. Load was applied at a displacement control

rate of 0.01" per minute. Typical stress-strain diagrams for the unidirec-

tional and (±45)2s laminates are shown in figures 4-2 to 4-5. Average pro-

perties are summarized in Table 4-2. Included on this table are the values

of fiber content and specific gravity. Specific gravity was determined by

accurately weighing and measuring a volume of the material. Fiber content

was determined from several photomicrographs of the unidirectional material.

A typical photomicrograph is shown in figure 4-6.

The cumulative distribution functions of both the tensile and compress-

ive strength of the unidirectional material obtained by using the maximum

likelihood method for estimating the parameters of a two-parameter Weibull

distribution from the experimental data are shown in figures 4-7 and 4-8.

Specimens of all other laminates used in this study were instrumented

and tested to determine the laminiate tensile modulus (E ), Poisson's ratio
x

(V xy) and laminate ultimate tensile strength. Typical stress-strain dia-

grams for each laminate are shown in figures 4-9 to 4-13. Average laminate

properties are summarized in Table 4-3.

These basic material data are required as input information for the

subsequent fracture analysis.

C. Static Load-Damage Tests

During the course of the static tests, specimens of the (±25/90)s,

n 1, 2, 3, and the (02/90s)s and (02/903)S laminates were periodically
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removed from the testing machine, treated with DIB, and subjected to X-

radiographic inspection. The intervals for this inspection procedure

corresponded to step load increases of 10% of the UTS of each laminate

until the detection of damage at which point the interval wP3 reduced to

step load increases of 5% of the UTS. Figures 4-14, 4-15, and 4-16 show

the photographs of the results of this inspection process for a (02 /902) s

specimen, a (02/903)s specimen, and a (±25/90) specimen respectively. For

the first two cases there is no sign of delamination; however, the number

of transverse cracks increases with increasing load. For the third case,

delamination is observed at a slightly higher load than that where trans-

verse cracks were first detected.

These inspection records are used to construct the load-damage (S-a)

relationships for each laminate. This is accomplished by counting the num-

ber of transverse cracks detected on the photographs in a four and one-half

inch length of the specimen at each load level. Results are sho3wn in

figures 4-17 to 4-21 where the S-a relations are presented as graphs of the

transverse crack density, i. e., number of cracks per inch vs. laminate

stress for each laminate. Also indicated on these figures is the load at

which delamination has occurred.

By examining these load-damage graphs, the onset loads for transverse

cracking and delamination may be determined. Results are shown in Table 4-4.

Other features of the damage progression may be determined from these figures.

It is seen that there is no sign of delamination in either the (02/90 2)S

laminate or the (02/903) laminate. The transverse crack density is an in-

creasing function of the load although for these two laminates, the crack

density appears to level off near final failure, indicating a "saturation"
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density of 45 cracks per inch for the (02/902)s laminate and of 37 cracks

per inch for the (0 2/9 0 3)s laminate. For the other laminates, delamination

always proceeds final failure. In the (±25/90) laminate, a few transverse
5

cracks appear in some specimens before the initiation of delamination; how-

ever, the predominant mode of damage is delamination. In the (±25/902)s

and (±25/903)s laminates, transverse cracking proceeds delamination. The

onset load for transverse cracking is lower for the (±25/903)s laminate

than for the (±2 5/902)s laminate, indicating the thickness effect of the

90°-layer. For this family of laminates, it is seen that an increase of

the load by less than 20% over the onset load for delamination produces final

failure (100% delamination).

Finally, several of the static tests were halted before final failure

of the specimen in order to obtain photomicrographs of the internal damage.

Two such specimens are shown in figures 4-22 and 4-23. Figure 4-22(a) shows

the X-radiograph of a (±25/903)S specimen after transverse cracking has be-

gun. As can be seen, each transverse crack extends across the full width of

the specimen. In figure 4-22(b), the photomicrograph of the indicated area,

it is seen that the transverse crack also extends through the full thickness

of the 90*-layers and is arrested of the 25/90 interfaces. Figure 4-23(a)

shows the X-radiograph of a (±25/902)s specimen after the initiation of de-

lamination. In figure 4-23(b), the photomicrograph of the damage in the p

indicated region, it is seen that the delamination wanders between the mid-

plane 90/90 interface and the 25/90 interface and that the transverse cracks

apparently arrest the delamination at each interface. p

D. Constant Amplitude Fatigue Tests

All constant amplitude tests have been performed under load control,

p
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tension-tension conditions with R = 0.1. Three maximum fatigue load levels

were selected for each laminate at values approximately 20% below, 10%

below, and 10% above the damage initiation loads determined from static

tests. These load levels are shown in Table 4-5. Note that the levels

for the (±25/902)s and (±25/903)s laminates differ slightly from the levels

indicated above. These changes were made because it was found that the

lowest load level (20% below initiation) resulted in very little damage even

at one million cycles. As the purpose of these tests is to determine a

cycle-damage relationship, the above levels would provide little useful data

and, thus, these levels were increased to those shown.

During the course of the fatigue tests, each specimen was periodically

removed from the testing machine, treated with DIB, and subjected to X-

radiographic inspection. The photographic plates resulting from this in-

spection procedure were then used to determine the nature and extent of the

fatigue induced damages. For all laminates under study, it has been found U

that the mode of fatigue induced damage at all load levels is identical to

the mode of damage under static loading. Specifically, the (02/902)s and

(0 2/903)s exhibit damage only in the transverse cracking mode; the (±25/90)

laminate exhibits delamination preceding transverse cracking; and the

(±25/902)s and (±25/90 3)s laminates exhibit transverse cracking preceding

delamination. The photographic plates were also used to obtain quantita- U

tive information on the damage state in each specimen. For transverse

cracking, the total number of cracks in a four and one-half inch length of

the specimen were counted; for edge delamination, the maximum extent of the

delaminated region into the width of the specimen was measured. These data

are shown graphically in figures 4.23 to 4.27.
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From these figures it can be seen that, in all cases, damage (either

transverse cracking or delamination) occurs at a lower number of cycles as

the maximum fatigue load is increased. For the case of transverse cracking

damage, the number of transverse cracks increases steadily with the con-

tinued cycling and, in general, at a given number of cycles a specimen

fatigued at a low load level has fewer cracks than a specimen cycled at

higher load. For the (±25/90)s laminate which exhibits only delamination

damage, it can be seen in figure 4.25 that after initiation, the perzent

delamination increases steadily until approximately the 30% damage level at

which point catastrophic failure occurs. For the (±25/902)s and (±25/903)s

laminates, delamination initiates when the transverse crack density (number

* of cracks per inch) attains a value of approximately 10 or 20 cracks/inch,

which is in agreement with the static test results.

The objective of these fatigue tests was to determine a cycle-damage

relationship for each laminate at fixed fatigue loads. The previously

reported static tests were used to obtain load-damage relationships for

each laminate. Using these results, a relation between load and cycles

may be obtained at constant damage states for each laminate. This load-cycle

relationship will then be used for the development of a cumulative damage

model.

* The concept of constant damage is illustrated in figure 4.28. The

vertical coordinate of figure 4.28 represents the static loading. When the

applied load reaches a c, onset of delamination occurs. This state of damage

* can be independently produced by a fatigue load, say at a1 < a c . Then,

under a1 , it takes N1 cycles to induce onset of delamination. Similarly,

the same state of damage can also be reached by a different fatigue load,

-56-



say a2P by N2 cycles. Points defining the same damage state in the of-log(N)

plane define a "constant" damage curve. In figure 4.28, a curve representing

20% delamination and a curve representing 100% delamination are depicted.

The 100%-curve corresponds to the final failure of this laminate;

it is the same curve as the commonly ganerated fatigue S-N curve.

Experimental data has been used to construct these constant damage re-

lations for all laminates used in this study and results are shown in figures

4.29 to 4.33 respectively.

E. Cumulative Damage Tests

Upon the construction of the constant damage curves in the load (of) -

life (N) plane, cumulative damage in the laminate under a given load spec-

trum may be evaluated in the following manner. Consider, as an example, the

load history shown in figure 4.34. When it is applied to a given laminate,

the state of damage at the end of the period of constant amplitude loading,

01 is represented by point A in the load-life plane. The constant damage

curve passing point A is denoted as curve aI (say e. g., the onset of de-

lamination). At the end of N1-cycle, the fatigue load af is raised to a2.

Then the state of damage in the laminate at N1 moves from point A to point B

along curve a1 . Under 02 and for a period of (N2-N1 ) cycles, the damage

state in the laminate is represented by point C; through C passes the con-

stant damage curve a2. Clearly, the damage state represented by curve a2

is more extensive than the damage state represented by curve a At the end

of the N2-cycle, the fatigue load is lowered to 01 again; and the corres-

ponding damage state moves from point C to point D along the constant damage

curve a2. Finally, at the completion of the loading history at N3, the

damage state moves from D to E, where the damage is represented by curve a3.
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A series of tests has been designed to study this concept of cumula-

tive damage. The laminates selected for the study are the (02/902)s9

(02/903)s and (±25/90)s laminates. These were selected because, as de-

scribed above, each has a unique fatigue damage mode. Thus, any compli-

cation arising from the interaction of damage modes is eliminated in this

first-round study. The test program is given in Table 4-6 where the load

levels and number of cycles at each level were selected on the basis of

cycling at high level followed by low level, low level followed by high,

and cycling both above and below the damage initiation level. Data are

given in Appendix C. Results will be discussed in the following section.
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TABLE 4.2: MATERIAL PROPERTIES

A) Material Properties as Obtained From Unidirectional Laminates

E (comp) MPa (ksi) 132.3 x 103  (19.19 x 10 3

L
3 3

E -(Ten) MPa (ksi) 139 x 10 (20.17 x 103)
L3 3

E MPa (ksi) 11.1 x 10 ( 1.6 x 103)
T

VLT 0.269

a MPa (ksi) 1826 (264.86)
utt, L

au2t, T MPa (ksi) 60 (8.7)

Fiber Volume, % 66.48

Sp. Gravity 1.55

B) Material Properties as Obtained From (±
4 5 )2s Laminates

GLT, (comp) MPa (ksi) 4861 (705)

GLT (ten) MPa (ksi) 4792 (695)
DIT

0
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TABLE 4-3: LAMINATE PROPERTIES

E ULT SPECIFIC GRAVITY

LAMINATE mpg (ksi X MPa (ksi)

(±45)25 19.1 x 103  (2780) 0.83 157.7 (22.87) 1.64

(02/902)5 72.1 x 103 (10460) 0.0704 859 (124.6) 1.67

(02/903)s 63.6 x 103  (9220) 0.045 782 (113.5) 1.59 ¥3

(±25/903)9 42 x 103 (6100) 0.101 274.9 (39.87) 1.58

(±25/902)s  46.1 x 103 (6700) 0.162 315.4 (45.75) 1.57

(±25/90)s 63.8 x 103 (9250) 0.29 406.8 (59) 1.56
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TABLE 4-4: ONSET LOADS FOR DAMAGE

TRANSVERSE CRACKING DELAMINATION

LAMINATE ONSET LOAD a, MPa (ksi) ONSET LOAD G, MPa (ksi)

(±25/90) 254.93 (37) 310.05 (45)
s

( 25/902 172.25 (25) 261.82 (38)

(±25/90 124.02 (18) 2/9.14 (36)

(0• -1 . 2 )s 330.72 (48) --

(0 2,03) 234.26 (34)
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TABLE 4-5: MAXIMUM STRESS LEVELS FOR FATIGUE TESTS

Maximum Stress Level, of, MPa (ksi)

!Laminate 1 II III

* (±25/90)s  199.81 (29) 227.37 (33) 275.6 (40)

(±25/902) 151.58 (22) 186.03 (27) 213.59 (31)

(t25/903 ) 130.91 (19) 151.58 (22) 172.25 (25)

(02/902)s  261.82 (38) 296.27 (43) 365.17 (53)

(02/903)s 179.14 (26) 206.7 (30) 261.82 (38)

*- "
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TABLE 4-6 CUMULATIVE DAMAGE TESTS

Laminate Maximum Fatigue Load, MPa (ksi) Cycles @ Load

(02/902) 551.6 (80) 100
413.7 (60) 100,000

413.7 (60) 100,000

551.6 (80) 100,000

344.7 (50) 1,000
482.6 (70) 1,000
344.7 (50) 100,000

(02/90 103.4 (15) 100,000

2/3 344.7 (50) 1,000,000

551.6 (80) 10
275.8 (40) 1,000,000

179.2 (26) 10,000
206.8 (30) 30,000

179.2 (26) 100,000

(+25/90) 137.9 (20) 100,000
206.8 (30) 300,000

137.9 (20) 100,000

344.7 (50) 1,000

344.7 (50) 10
206.8 (30) 300,000

275.8 (40) 1,000

344.7 (50) 1,000

137.9 (20) 300,000
275.8 (40) 1,000

206.8 (30) 100,000
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V. CORRELATION OF DATA WITH MODEL

A. Introduction

In Section III the approach to the development of a cumulative damage

model for transverse cracking and free edge delamination was detailed. The

model was seen to be an extension of existing models for the onset of damage

under static loading and to have as its basis the concept of the energy re-

lease rate as a fracture criterion. In Section IV, details of the experi-

mental program were given. It was seen that the laminates used in this

study exhibited only the transverse cracking and delamination modes of damage

before final failure, and that the damage sequence was the same under fatigue

loading as under static loading. In this section, the experimental results

will be correlated with the cumulative damage model concept.

B. Static Fracture Model

In this report, the only sub-laminate cracks investigated are the 90'
-

cracking and the free-edge delamination. In order to set up a crack ini-

tiation and growth criterion for each of the two types of cracking, it is

assumed that micro-flaws exist along the fiber-matrix interface, and also

along the ply-to-ply interface. As previously discussed, these initial flaws

are described by an assumed distribution f(a c ) which is then regarded as a

known macroscopic material property. The Griffith criterion, when applied

to predict the initiation of sub-laminate cracking, is:

G(a) > G (5-1)

CC

where a is the largest member of the distribution f(a c. For the specific

modeling of transverse cracking and free edge delamination, G(a) must be

-108-
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appropriately calculated by the finite element crack-closure procedure

as discussed in detail in Appendix B. The energy release rate is given by:

G(a) = t[Ce 2 + C eAT + C AT 2 (5-2)
e et t

or equivalently:

G(a) = t[v- e + V AT] 2  (5-3)

e t
i • r

where

e = far field strain,

t = ply thickness, taken as 0.0052",

AT = thermal load, taken as -225'F., and

Ce, Ct, and Cet are the mechanical, thermal, and mixed

shape functions, respectively, determined from the finite

element program.

These shape functions are shown in figure 5.1 for transverse cracking

In the (02/902)s and (02/903)s laminates; in figure 5.2 for transverse crack- N

ing in the (±25/90 )s family of laminates; in figure 5.3 for mid-plane de-

lamination of the (±25/90n)s family; and, in figure 5.4 for mixed-mode de-

lamination in the (±25/90n)s family. Thus, the left hand side of equation

5.1 may be calculated for any value of a and for any value of the far field

laminate strain.

As in any analytical model construction, idealization and simplication

are made in order to reduce mathematical r)mplexity. In the case of free-

edge delamination, for instance, one may idealize the crack growth as a self-

similar, or co-planar crack contained in an interface between two layers.
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The growth is one-dinensional and the crack front is represented by a point.

Similarly, transverse cracking may also be idealized as a self-similar crack

along the matrix-fiber interface in the 90°-layer. In either case, the crack

surface is assumed flat and smooth. In reality, of course, the crack sur-

face Js ragged and warped depending on the exact nature of the crack, even

when viewed at the macroscopic level. But, the idealization may be tolerated

in the overall modeling, if the material property (e. g., the critical energy

release rate, G or Kc, is measured as a bulk quantity, and the size of the

crack is large. This kind of idealization is, on one hand, a mathematical

necessity; and on the other hand, it must be adjudicated by physical experi-

U.The above consideration bring'3 upon another conceptual question, which 4

Is liow Gc or Kc should be physically determined. Although transverse cracks

and edge delamination may all be regarded as matrix-dominant cracks, their

individual resistance against crack growth when measured macroscopically

could differ considerably. Consider, for example, the two different crack

actions in a unidirectional laminate as shown in figure 5.5. Case (a) illus-

trates a mode-I delamination action between 0*/00 layers, and case (b) depicts

a mode-I crack action between 90'/90' layers. The two crack actions may

produce distinctive crack surfaces at the microscopic level, and thus give

* different values for Gc which is measured at the macroscopic level. This

CCclearly raises the question of whether G can be regarded as a general
c

material property for the class of the so-called matrix-dominated cracks.

* The difficulty comes, obviously, from the fact that G is measured withoutc

regard to the microscopic details of the cracking surfaces.

Tn a series of tests, conducted recently at Texas A & M University

* different values for the critical energy release rate, C were found for ac

unidirectionaJ composite, depending on how the crack is propagated. In
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particular, for the AS-3502 composite system, G measured under 0c/0
c

2
delamination action, case (a) figure 5.5 was about 140 - 160 J/m ; while

Gc, under 900/90' cracking action, case (b), figure 5.5, was found to be

210 - 225 J/m2 . G for the neat resin (without reinforcement) has - value
C

of only 60 - 70 J/m . The differences all stem from the individual charac-

teristics of the crack su races. These results and results from other in-

vestigators are sunnnarized in Table 5.1. Also shown are the values of Gc

used in this study for each of the cracking modes. As can be seen, the

values of Gc dete.mined in this study are in general agreement with the
C

results independently obtained by others for similar materials and crack

geometries.

With the values of G known for each cracking mode, predictions of the P-C

laminate load for the onset of damage may be made using equation 5.1. Clearly

a value of the initial flaw length must be selected for these calculations,

and, for the onset of damage, this flaw length must correspond to the largest

of the initial flaws in the material. Values for this largest flaw may be

obtained by considering the fracture of the 90' material, for which u = 7 ktri,
U

E = 1.6 msi, and Gc (on a 0/0 interface) 130 J/m 2 (0.9 lb/in). Calcu- px c

lations produce values of the initial flaw length a of a = 1.75t forc c

transverse cracking and a = 2.0t for delamination, where t is the thickness
c

4 of a ply. Calculating the energy release rate shape functions at these "

values, and using the appropriate values of G c, allows the solution of

equation 5.1 for the laminate strain (or stress) at the onset of damage under

static load. Results are shown in Table 5-2 where both the calculated and

the average experimental values of onset load are shown for each laminate

used in this study. As can be seen, agreement is good in all cases with the

possible exception of the (±25/90)s laminate in which damage occurs experi-
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mentally at a load 25Z below that predicted.

In previous sections, the mechanics of the appearance of the first

transverse cracks have been discussed in detail and the concept of the

method of extending the damage initiation model to a model for multiple

transverse cracking discussed. In the following, details of the multiple

Afracture model will be given. Emphasis will be placed on the application

of the model to the (02/902)s and (02/903)s laminates which have trans-

verse cracking as the only mode of damage preceding final failure.

Under static load, the first transverse crack per unit length forms

at some critical load, a , the second crack forms at a different cross-c

5e'ion under a higher load, and so forth. Assuming that each transverse

~ crack forms as the result of an initial material defect (or crack), it may

thus be postulated that a distribution of initial defects per unit length

exists in the material. Thus, the first transverse crack will form at the

''C cros.3-section with the largest initial crack, the second at the cross-

section with the next largest initial crack, and so on. Under fatigue, the

entire distribution may grow larger with increasing number of cycles.

Calculations have been performed with regards to this concept. Using

the available energy release rate curves for the (0 2/902 ) and (0 2/90 3)s

laminates and using the value of G = 1.3, the values of a necessary for
c c

* t'he initiation of transverse cracking at various laminate strain loads were

calculated for each laminate. Results are shown in figure 5.6. In order to

,Ietermfne the initial flaw size distribution, the load-damage relations for

these laminates were organized as histograms as shown in figures 5.7 and 5.8.

For example, in figure 5.7 it is seen that, between stress levels of 67.5 and

72.5 ksi, 3 new cracks have formed per unit length. Using figure 5.6, it is

thus determined that each unit length of this laminate contains 3 initial

cracks of a = 0.0032".
c
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This process Is repeated for each stress level and each laminate. The

values of a are then fit by a two-parameter Weibull distribution. Resultsc

are shown in figure 5.9. It was hoped that these distributions would be

nearly identical, which would thus indicate that the distribution of flaws

13 common for the material. However, as can be seen, the distributions are

ditferent. It can be seen, however, that a nearly 3-2 relation is main-

tained. This -2 relation is not only the ratio of the 90°-plies in these

laminates, it is also approximately the ratio of the transverse crack satu-

ration density for these laminates.

For the convenience of the model development, we shall make the

tollowing assumptions. The length of the initial flaws (cracks), a , has

a fixed distribution, independent of laminate thickness and volume. This

di rribution gives the percentage of flaw within each length interval, not

the exact number. The cracks in any part of the specimen will have the same

distribution, provided the volume considered is of sufficient size. This

assumption ignores the extremely long cracks, which cannot exist in thin

specimens. It also ignores the existance of the boundaries between the 90/90

plies. It is felt that these effects are minor.

For the present initial approach, we shall also assume that once a crack

is propagated to full width, no crack will form within the shear-lag zone

on both sides of it. This is just for mathematical simplicity at the present.

This restriction will be relaxed later. In the actual case, cracks do not

form within the shear-lag zone of previous cracks, although this occurs

only when the load is near the maximum and the crack density is approaching P

the maximum.

For a given specimen, the initial flaws in the 90 0 -layer are distributed

aloag its length. Assume a has a two-parameter Weibull distribution, with a

L



density function:

a
C

f_( a (a ) a I iexp [ - (5-4)

and the corresponding distribution function:

a

F(a ) = 1- exp [ - ()c] (5-5)

Assume that 99% of all the initial flaws have a length greater then a co then:

F(ac) = 0.01 (5-6)
Co

The deterministic relation between laminate strain and flaw length a

as shown in figure 5.6 may be written as a telation a = a(a ), between the
C

initial flaw length a and the laminate load stress a which would cause aC C

to propagate to full width of the 90°-layer. As a first order approxi-

mation, this relation can be r.opresented by a linear equation:

a = -C a + B (5-7)c

We shall use this linear equation for the subsequent development; a more exact

equation may be used if necessary, although the final results may have to be

obtained by numerical method, whereas for the linear case assumed here,

closed form results can be obtained.

In equation 5.7, C and B are positive constants. In the C vs. a coor-c

dinate, equation 5.7 is a straight line, whose intercept with the a axis

equal to B:
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a = B, when a = 0

B
and its intercept with the ac axis equal to C, or:

B
a c when a =0

Since a is a random variable, a must also be a random variable, whose
c

distribution can be determined from equations 5.4 and 5.7. Inverting equa-

tion 5.7, we have:

1
a = -- (a-B) (5-8)

c c

6r

It can be shown that the density function of a is related to that of a by:
c

Sda c

f(a) f(ac) - (5-9)

where a is treated as a function of a through equation (5). Substitutingc

equations 5.4 and 5.8 into 5.9, we obtain:

f(a) = (B- a)c -  ep - (B ) (5-10)

Integrating, we have:

B-aF() exp[ )] (5-11)

Now let:

ao -C a + B (5-12)o co
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that Is, 'j is the load under which the initial crack with ]ungth a
0 Co

propagates to full width. Since 99% of the initial flaws have lengths

l iarger than aCO therefore under the load ao, 99% of the initial flaws

have propigated to full width, or:

F(o ) = 0.99 (5-13)

*Denoting the number of full width cracks per unit length formed at load a

by n, and noting that at load co, n0 , and n
01 m

n 0 n F(U) (5-14)
Sm

If n is known, then equation 5.14 provides a relationship between
m

the load a and the number of full width cracks per unit length at that G.

Let us elaborate on the meaning of F(a). It may be considered as the

percent of saturation of the fully developed cracks under the load a. The

load a will cause cracks of a particular length a or larger to propagatec

to full width; there are [1 - F(ac ) percent of cracks that have a length

of a or larger. After combining f(a c) and a = a (a), therefore, F(u)cc c c

is the percent of fully developed cracks under a.

Note that the saturation crack density, n m , must be determined by ex-

periment or by shear-lag analysis. In the present derivation, we only

know that:

F(c) = n
n

m

If the a vs. a curve is represented by two straight line segments, as

shown in figure 5.10 we can still obtain closed form solutions. The equations
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for these two straight lines are of the form of equation 5.4, with the lower

segment of constants B and C, and the upper segment of constants B and C'.

These two segments intersect at the point:

a = p, a = q

Now, the density function of a is the same form as the single segment case,

equation (7), with the modification that B and C are without prime in the

lower segment, and with prime in the upper segment.

Upon integration, we obtain:a
F(a) = f(a) do

=exp[- B a , fora<q (5-15)

This is identical to the single segment case. For a > q, we have:= q  a
F(o) f(o)da f (a)do P

exp [ - ( a- .)c]_ exp [ - B' (5-16)

B' -ac+ exp F-r-) 3,for u> q

A two-parameter Weibull distribution with parameters a = 3.0 and P

= 0.004 inches is taken as the distribution of inherent flaws (a c ) in

both the (02/902)s and (02/903)s laminates. A two-segment approximation
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to the a - a relation calculated from the finite element code is also used.
C

The distribution of a (equations 5.15 and 5.16) have been calculated using

the values:

B =93 B' = 200

33
C 7.5 x 10 C' = 45 x 103

q 70 nm  45

for the (02/902)s laminate and:

B = 68 B' = 120

C = 5.87 x iO
3  C' = 19.45 x l0

3

q = 46 n = 37

for the (02/90 3)s laminate. Results are shown in figures 5.11 and 5.12 for

each laminate. Note that the values of n here are those that have been de-
m

termined experimentally. As discussed elsewhere, a shear-lag approach may

also be employed for the determination of n . Referring to figure 5.13, a

shear-lag zone corresponding to an approximate 90% reduction in peak shear

stress (i. e., a value of normal stress in the 90°-layer of 90% of the far

field stress) produces a shear lag zone of x/b = 2.5. This corresponds to

a saturation crack density of 38 cracks per inch in the (02/902)s laminate.

From figure 5.14, it is seen that a spacing of 2.5 produces a ratio of

* energy release rates of 65%; that is, the energy release rate for the second

crack has values of 65% of that for the first crack. Since energy release

2
rate is proportional to a , it is seen that only a 20% increase in the far

field stress is required to form cracks with this spacing. The resulting
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load-damage relation using the distribution of a and n = 38 is shown in
m

figure 5.15. Agreement betweea the predicted and experimental load-damage

relations is good, regardless of the method of selection of n . However,m

we shall use the experimentally determined value in subsequent correlations.

C. Constant Amplitude Fatigue Model

In Section III, the basis for the constant amplitude fatigue model was

shown to be the existence of damage growth functions FTC and FDL which map

the damage-load curve onto the damage-cycle plane. A general form of a

growth rate equation:

da G

dN (  P (5-17)
c

and an alternate form for the case of transverse cracking:

dn p (= ' (2--) P(5-18)
dN Gc

were introduced. In this subsection, the experimental data will be incor-

porated into the model. Emphasis will be placed on the (02/902)s, (02/903)s

and (±25/90)s laminates which exhibit unique damage modes until final failure.

(1) Transverse Cracking Model

As discusqed in the section on experimental results, the transverse

crack formation under constant load fatigue cycling is similar to that in

the static case. Under a load smaller than the crack onset load, there is

no crack formed after one cycle. After repeated fatigue cycling under this

loid, cracks start to appear and increase in number as the cycle increases.

-
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Our experiments have not carried high enough cycles to reach crack satu-

ration, but it is believed that the saturation density under fatigue is

the same as under static load, both in number and in appearance.

In this section, we shall formulate a model to represent the crack

formation under fatigue loading. Again, we assume there are initial flaws

(cracks) of length a in the specimen. The distribution of a is deter-
c c

mined from the static case. It has a two-parameter Weibull distribution

given by equations 5.4 and 5.5.

A deterministic rule of crack growth per cycle of fatigue loading will

be assumed. In general, this rule may contain many parameters:

da = g(N, a, G, .) (5-19)

where,

a C (5-20)
c

i- the ratio of the energy release rate based on the current crack length,

and the critical energy release rate. The r ason for including the varia-

ble N, a, and G in equation 5.19 has been discussed elsewhere.

For the present study, we shall assume a specific form for the crack

propagation rule as follows,

da a= k (5-21)

where k = k(C). This rule is based on some physical reasoning. The energy
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release rate, or the stress intensity factor, increases as the crack length

increases. Therefore, da/dN is proportional to a or C. Here we have in-

cluded "a" explicitly, and included G implicitly in G. Similarly, da/dN

should be proportional inversely with N. in rules proposed by others, N

may not appear explicitly, but it is implicitly included in AG, or AK terms.

In a given specimen, there are inherent initial cracks. These cracks

will increase in length due to every cycle of fatigue loading according to

equation 5.22. Consider a crack of original length ac, after N cycles of

fatigue, the crack length increased from a to a, which can be obtained byc

integrating equation 5.21 or:

a N

c

which yields, after integration:

In a - in a = k In N (5-23)
c

Iiere k(G) has been assumed to be constant. Now we shall define a value a*,

which is the crack length that under the load a will propagate to the full

width of the 90'-layer. When the load is very small, "a" could be almost

equal to the full width and still cannot produce enough energy release rate

to cause the crack to propagate to full width due to static fracture mechan-

ics. In that case, the crack will grow according to the fatigue rule of

equations 5.19 and 5.23 to the full width and the static fracture mechanics

criterion is not needed.

Also, we define the fatigue cycle that causes a crack to grow to length

a* as N*, or from equation 5.23:
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L .......... - - - -

n = ln a*- k ln N* (5-24)
C

or:

ac (N) k (5-25)

Now we shall treat a* as a constant, a as a random variable. It followsc

that N* is a random variable. The distribution of N* can be related to that

of a by: iC

d a

f(N*) = f(a c ) - (5-26)
c d N*

From equation 5.25, we have:

dadac a*kd = (Na)k + 1 (5-27)

dN* (N*)k~

Substituting 5.27 into 5.26, we obtain:

k a a* U  -l - k a*aN-ka
f(N*) (N*) exP (N*) (5-28)

After integration, this yields:

F(N*) = exp a* ) a (N*) - k a  (5-29)

The meaning of F(N*) is similar to that of F(a) in the static case. It is

the percentage of saturation cracks at cycle N*. If the saturation crack
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density n is known, the crack density under cycle N* is then:m

n = n F(N*) (5-30)
m

The constant amplitude fatigue data for the (02/902)s and (02/903)s

laminates has been used. The parameters a and a are again taken as 3 and

0.004, respectively. The value of a* is determined for each loading from

the stacic fracture criteria. In the case of the (02/902)s laminate,

a* = .0104 in. (= 2t) for u, = 38 ksi and a = 43 ksi, and a* - 0.008 in.

for af = 53 ksi. For the (02/903)s laminate, a* = 0.0156 in. ( 3t) for

the two lowest stress levels and a* = 0.010 for a = 38 ksi. The values of

n were taken as the static experimental values. The value of k was deter-
m

mined by a best fit procedure with the data for each case. As can be seen

in figures 5.16 and 5.17, agreement between the data and predicted values

is quite good, indicating that the growth law has captured the trend of the

experiments. Also, note that the value of the parameter k seems to be

nearly constant. At this time, however, the exact nature of this parameter

.1nd its relation to G has not been determined.

As previously indicated, an alternate approach to forming a transverse

cracking model is possible through the use of equation 5.18. This approach

uses the transverse crack density (or the total number of cracks in a speci-

fied length) directly. The quantity An, the change in number of cracks per
AN

change in number of fatigue cycles, is found from the experimental data.

This quantity is then used as an approximation of the damage growth rate,

dindN which in turn may be integrated to obtain the cycle-damage relation.

Data for the (02/902)s and 02/903)s laminates have been reduced and
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are shown in figures 5.18 and 5.19 respectively. As can be seen the quan-

An
tity in TNfor each laminate at each stress level varies linearly with the

log of fatigue cycles, suggesting that the general form of the growth rate

equation is:

dn = (G) InN (5-31)
dN

where a and 6 are empirical constants and G is the ratio Gf/Gc.

qFrom equation 5.31, the damage growth relation is:

np l nN dN (5-32)

N =1
0

strictly speaking, G is a complicated function; G = G (Gc, a, of). Thus,

equation 5.32 is a complicated integral. For approximation, we shall take

G = constant. Then, equation 5.32 becomes:

__ __ _ BnN

n = t ( + 1 )nG )  N (5-33)

or, by taking logs,

0 in n = ina - ln(l + $lnG) + (1 + lnG)lnN (5-34)

which is a straight line in in n - In N coordinates. Data are shown in

S
these coordinates in figures 5.20 and 5.21. Also shown are linear regression

fits to the data. As can be seen, the data at all load levels seem to follow

this linear relation, although the experimental values at large fatigue

1
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cycles tend to flatten out.

The constants obtained from a linear regression fit of the A data
AN

may be used for the determination of the parameters a and in equation 5.31.

These constants are shown in Table 5.3. A value of = -0.4325 was deter-

mined for all load levels for the (02/902) laminate and a value B = 1.46

was determined for all load levels for the (0 2/90 3)S laminate. Using these

values for a and values of a obtained directly from Table 5.3, equation 5.33

is plotted against the experimental data in figures 5.22 and 5.23. Again,

agreement is good.

(2) Free Edge Delamination Model

The damage growth equation for free edge delamination after the initia-

tion of macroscopic damage has been given as:

da = a P dN (5-3-)

NDL

where G = , and where a* represents a macroscopically definable delami-
C

nation size corresponding to the damage initiation cycle N DL. The problem

of the growth of an edge flaw from size a to a* will not be addressed here.
c

Equation 5.35 corresponds to a growth rate equation:

da da
dNa cG. (5-36)

Unlike the case of transverse cracking, the quantity - may be determined

directly from the experimental datd; i. e., the crack size "a" is directly

observable. Data for the delamination of the (±25/90) laminate has been
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daa
reduced to d information. Results are shown in figure 5.24 in in

vs. in N coordinates. Also shown are linear regression fits to the data

at each fatigue load level. As can be seen, the damage rate per cycle

appears weakly dependent coi the number of cycles, although data for the

twc lower load levels may be said to be independent of N. Data for this

laminate are shown in lna vs. inN coordinates in figure 5.25. Agait, the

data at each load level appears to follow a linear trend indicating that

the damage growth rate rule can again be taken as:

da = -5nN(57
dNaGd-N =  N (5-37)

Values of a and B can be determined using the linear regression constants

given in Table 5.3. Values for NDL are estimated from figure 5.25 as 60

cycles for of = ksi, 4000 cycles for a = 33 ksi, and 10000 cycles for

M= 29 ksi. The resultant damage-cycle relations obtained by performing

the integration of equation 5.35 are also shown in figure 5.25. It is seen

that the model provides a good description of the data.

(3) Mixed Damage Modes

The damage sequence in the (±25/902)s and (±25/903)s laminates has

been seen to be transverse cracking followed by delamination, which in turn

leads to the final failure. Analysis of these laminates is more compli-

cated than that for the (02/gn)s family and the (±23/90)s laminate because

of this interaction of damage modes. In particular, it is seen that the

transverse crack density may no longer be bounded by a value n as the num-m

ber of transverse cracks increases rapidly in a delaminated region. Alter-

nately, the onset and growth of delamination is certainly influenced by the

1
-126-



pre-existence of transverse cracks. Because of these complications, de-

tailed study of data from these laminates will be performed in the sub-

sequent phase of the project.

Following the insight into the damage growth gained from the (02/90n)s

and (±25/90) laminates, similar data reduction techniques have been applied
s

on a preliminary basis to the data from these two laminates. Data in the

dn
form - vs. N are shown in log-log coordinates in figure 5.26 for the

(±25/902)s laminate and in figure 5.27 for the (±25/903)s laminate. De-

lamination growth rates are shown in similar coordinates in figures 5.28

and 5.29. It is seen these relations are similar to those from the single

damage mode laminates. Transverse cracks versus cycle data for these two

laminates are shown in log-log coordinates in figures 5.30 and 5.31, and

delamination vs. cycle data are shown in figures 5.32 and 5.33. The linear

nature of all these relations indicates that growth laws of the form used

in the analysis of the single damage mode laminates are again applicable

to these laminates, although details of the actual modeling will have to

be modified.

D. Cumulative Damage

As shown in the previous subsection, the damage-cycle relation can be

determined for any constant amplitude fatigue load using any appropriately

determined damage growth rate per cycle law and some empirical constants.

The ability to construct these relations was demonstrated in details using:

da _ k(G) - (5-38)

dN N

for transverse cracking, and:
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da = SalnN (539)
dN

for delamination. The extension of constant amplitude fatigue damage to

cumulative damage through the concept of constant damage states was de-

scribed in Section 3-C. Consider, for example, a laminate subjected to a

fatigue load a, for N, cycles followed by N 2 cycles at load 2' and which

experiences only transverse cracking under each load. Then, the cycle-

damage relation, as given above, is:
I

n = n F(N*) (5-40)
m

Damage accumulates under each load in the same manner as under constant

amplitude fatigue. Thus, after N1 cycles at al, the damage is given by:

n - n m FI(N1 )

= ~x - N1 -k 1  (5-41)

Thus, when the load is changed from a1 to G2, the laminate has the damage

state of n1 . An equivalent number of cycles, N'I, to produce this damage

state at 02 may be determined as:

IXP ~ln n-2

The total damage after N2 cycles at a2 is thus:
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nT  n F (N + N' I )
T m2 2 1

n mexp (N 2  N- N 1)- k2  (5-43)r

This concept may easily be extended on a cycle by cycle basis to spectrum

loadings. Thus, the constant damage curves which were constructed from 
the

experimental data in figures 4.29 to 4.33 may not be constructed from the

analytical model.

The results of a series of cumulative damage tests are compared 
to the

predicted results. At this time, the experimentally constructed constant

damage curves are used to form the predicted damage, as the exact forms of

damage growth laws have not been determined. The cumulative damage tests

which were performed on the (02/902)s, (02/903)s, and (±25/90)s laminates

are shown superimposed on the constant damage curves in figures 5.34 through

5.40. Averages of experimental data are shown in parentheses at critical

points on graph. These results are summarized in figure 5.41 for transverse

cracking and in figure 5.42 for delamination. As can be seen, the agree-

ment between the predictions and the data is good in all cases. Thus, we

conclude that the use of constant amplitude fatigue damage and the constant

damage state concept is an appropriate method of modeling cumulative damage

for these damage modes.
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Table 5-1: SUMMARY OF TEST RESULTS FOR GIc AND G (IIi)c

Gic (0/0) G (I 11)c(0/0) G I (90/90)

G. D. 130 J/m2  365 - 475*

AS-3501-06

Texas A & M 230 - 475 210 - 245

q AS-3501-02

Wang & Kishore 155 160 - 490

T300/934

Wang & Crossman 140 - 225 - 230

*G /G 0.765
II TOT

VALUES USED IN THIS STUDY (AS-3501-06)

For transverse cracks;

G ic(90/90) = 230 J/m
2 (1.3 lb/in)

For mid-plane delamination;

Gic(90/90) = 230 J/m
2 (1.3 lb/in)

For mixed mode delamination (off mid-plane);

G (II) c = 265 J/m 2  (1.5 in/ib)

S -130-

S ,.a ,a ,, ,m, m,,- ,mm dm-- ,a ,-,mmt. '- u mm mmM mm'm" m - J- - " wm



Table 5-2: SOME RESULTS BASED ON THE FRACTURE MODELS f

Laminates Onset Transverse Crack Onset Delamination

[02/902]s  47 (48), ksi --

[02/903]s 34 (34)

[±25/90]s  61 (48) 60 (48)

[±25 /9021s 26 (28) 45 (42) r

[±25/903]s  22 (23) 40 (38)

*values in parentheses are averaged experimental results.

**predictions are based on: G ff= 1.3 lb/in (230 J/m 2
c

AT = -225 0 F.

a ff= 1.75t for transverse crackingc

= 2.Ot for delamination
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Table 5-3: DAMAGE RATE EQUATION CONSTANTS
DETERMINED BY LINEAR REGRESSION

Y = A + BX

dawhere: Y= in N  A = ln a

X - In N B = a ln

LAMINATE MAXIMUM FATIGUE LOAD A B

af, ksi

(02/902)s 38 -.885 -.675
43 -.044 -.73
53 .842 -.755

(02/903)s 26 .255 -.852
30 -1.216 -.661
38 .437 -. 767

(±25/90)s  29 -8.161 -.125
33 -6.971 -.114
40 -2.62 -.356

0
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Figure 5-1a: MECHANICAL LOAD SHAPE FUNCTIONS VS. RELATIVE CRACK
LENGTH FOR (0 2/90 2)s AND (0 2/90 )s LAMINATES.
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VI. SUMMARY AND RECOMMENDATIONS

In this report, we have presented the research results obtained during

Phase I of the AFML sponsored program, A Cumulative Damage Model for Advanced

Composites, under contract F33615-80-C-5039. In this section, these results I
will be summarized and recommendations for future work will be presented.

There are five major steps to the approach to the development of a

cumulative damage model. These are:

1) Development of the basic fracture mechanics approach for the static

onset of transverse cracking and edge delamination.

2) Development of a stacic model for multiple transverse cracks.

3) Development of the fatigue model for the two damage modes.

4) Extension of the fatigue model to cumulative damage, and

5) Extension to final laminate failure.

The development of the static onset model of step 1 was previously

performed by Wang and Crossman [19-26]. The finite element code they devel-

oped for the calculation of strain energy release rate was implemented on

an HP-1000 computer system under this project.

A literature review on failure modes and mechanisms in composites and

on methods of life prediction was conducted as part of steps 2 through 5.

A summary of this review, with particular emphasis placed on transverse

cracking and delamination, has been included as Section 2 of this report.

A static model for multiple transverse cracks bas been developed by

assuming the existence of a distribution of initial defects in the material.

This distribution is taken as a material property which, when combined with

the deterministic load-crack length relation and with prior knowledge of the

maximum number of cracks that can form in a specimen, produces a relation
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between the load and the transverse crack density. Comparison of this

theory and experimental results from the (02/902)s and (02/903)s laminates

has shown good agreement.

The static models for transverse cracking and delamination have been

extended to describe damage under constant amplitude fatigue by the intro-

duction of a damage growth rate per cycle equation. An underlying assump-

tion is that damage under fatigue loading of a given laminate is of the

same mode as damage under static load. The general form of the growth rate

equation is:

d a = P(6-1)
dN

where G = G(Gf, Gc) and a and p are determined empirically. Here, it is

- believed that G embodies information such as the load, material properties,

and lamination; thus, in the exact form of equation 6.1, a and p should have

been calculated for both transverse cracking and delamination using assumed

forms of equation 6.1. Comparison with experimental results is good. How-

ever, further experimental data are required in order to determine the exact

nature of equation 6.1.

A cumulative damage model based on the concept of constant damage

states has been proposed. In this model, the static load-damage relation

and the constant amplitude fatigue damage-cycle relation are combined to

form a relation between load and cycles. This relation is then used to form

an equivalence between the number of cycles at one load that produces a

given damage state and the number of cycles at another load which produces

the same damage state. The results of a brief series of cumulative damage
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experiments show good agreement between the observed and predicted values.

As described above, further experimental data is required in order to
p

fix the exact form of the equations of the models and to determine the range

and significance of the parameters. A sequence of tests involving the

(02/90 the (02/903) and the (±25/90)s laminates is planned for the

following phase of this project. These tests will involve different fatigue

load levels and different environmental conditions than the tests performed

during Phase I. In addition, a study of a more realistic laminate, such as

a quasi-isotropic, is planned.

Several questions remain to be resolved analytically. First is the

description of the delamination under fatigue load. Here, it is felt that

further study of the random distribution of pre-existing edge flaws will be

useful. Second is the analysis of laminates that experience several modes

of damage before final failure. This falls, however, under the more general

topic of extending the fatigue damage models developed here to the deter-

mination of final failure of the laminate.

We can classify the damage progression to final failure in laminates

under tensile load into three types. A type I sequence is the formation of

transverse cracks in the off-axis plies followed by fiber breakage in the

load-carrying plies which then produces final failure. Type II shows trans-

verse cracking followed by a delamination that initiates at the transverse

crack tip and that grows in the load direction. Type III shows delamination

which grows in the direction normal to the applied load along with transverse

cracks which form under the delaminated region. These types of damage pro-

gression are shown schematically in figure 6.1.

The model for the type III laminate has been established during Phase I.
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This model, though developed for free-edge delamination, may be applied to

internal delaminations as long as the two-dimensional field equations and

the one-dimensional growth assumptions are valid.

It is felt that the current energy release rate approach may be used

to describe both the type I and II failures. For the type T sequence, the

transverse cracking portion has been modeled in Phase I. This model may

be extended to include fiber breakage by assuming that the 0°-layer is a

homogeneous anisotropic layer. When a transverse crack is arrested at the

0* interface, it is assumed that the process of arresting the crack pro-

duces damage in the 0°-layer. This damage may be idealized as an equi-

valent crack in the homogeneous layer. The existing finite element code

can then be used to calculate the energy release rate as this crack extends

through the 0°-layer. Thus, a model similar to the existing transverse

cracking model would be developed. Of course, the value of GC and the ex-
c

tent of damage done by an arrested crack needs to be determined experimentally.

For the type II sequence, the finite element code may be used to cal-

culate the energy release rate for the delamination (which is a combined

mode I and mode II). The properties of the 90°-iayers may be reduced to re-

flect the presence of the transverse cracks in this layer. For this case,

final failure may occur when the delaminated region has propagated through-

out the specimen or when the 00-layer fails. Here, one apprnach to failure

of the O-layer is through a pLobabilistic chain of bundles concept. As

the delaminated region grows larger, the length of the u11supported 0 region

becomes larger and thus the probability of failure of the 00-layer increases.

Limited work on this type of model was done by Law [25 ] for the static load

case. Under this program, this model would be extended to fatigue.
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Figure 6-1: Schematic of Damage Progression Leading to Final Failure.
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Appendix A: REVIEW OF FRACTURE MECHANICS

In our study of texts on fracture mechanics, therte seems L,, b, SOfli,

Cconfusion regarding the definition of the energy release race, particularly

in discussions on fixed load and fixed displacement boundary tra,-tions.

One reason for this apparent confusion is that some authors define the

energy release rate as the change of potential energy of the body while F

others define it as the change of strain energy of the body. Rice [54]

has given a concise derivation of the energy release r-te from general

principles, although he did not formulate the energy release rate in terms

of compliance.

Another reason for the apparent confusion is the lack of clear dis-

tinction between the potential energy and the strain energy. Some authors

use the loose term "elastic energy." For instance, in [55] (Hertzberg),

the energy release rate for the fixed grip case is shown to be the nega-

tive of that for the fixed load case (equations 8 - 16a & b). In a more

precise sense, the release rate of potential energy for these two cases
should be the same, not negative to each other.

Consider a linear elastic body containing a crack of length "a" which

is loaded as shown in figure A.I. The potential energy of this body may be

expressed as:

U =V -W (A-I)

where:

V = stored strain energy

A-I



and:

W = work done by external forces.

For the crack to extend by an amount da the necessary additional sur-

face energy is obtained from a change in the potential energy of the body

which, in view of equation A.1, may be rel3ted to changes in strain energy

and work done by external forces. Defining G, the energy release rate, as:

G = dU (A-2)da

we may thus write:

G= - dU dW dV (A-3)

da da da

Note that G is the decrease of potential energy per unit crack extension;

it is the rate of energy released from the strain energy and work done of

outside force.

A. Fixed Displacement Case

A typical load-displacement diagram for the linear elastic body is

shown in figure A.2. In this figure, line OP corresponds to the response
e1

of the body containing a crack of length "a" while line OP2 corresponds to

a crack length (a + da). M 1 and M2 are the respective stiffnesses of

the body. Clearly, for this fixed displacement case, d6 = 0 and therefore:

40

dW 0 (A-4)
da

A-2
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Thus,

dU dV -5)

da da

We may also relate the energy release rate to a change in the coinp"ian u

of the body. Referring to figure A.2, the change in the strain energy as

the crack extends from length "a" to (a + da) is:

dU d 1 (A-6)
d-a da P 2 )

where-

P 1 P

6 = constant - = (A-7)M1 M 21 2

or, in general:

P- constant. (A-8)MII

Differentiation of equation A.8 results in:

Mda + P d (l/M) = 0

or (A-9)

1 dP = a (IIM).

Writing equation A.6 as:

dV =Ii. dp2

da 2 da %M

A-3



and performing the differentiation results in:

dV = 1 2P dP 2 (A-10)

da 2 WM da +PdaCA)

Substituting equation A.9 into equation A.10 produces: j
dV 1 2P 2 d (1M)+P2 d (lM
da 2 L da da 2

and simplifying:

dV 1 2d
-d = - P - (l/M). (A-I)

Therefore, from equation A.5 we have:

1 p2d (A-12)2 = -- (l/M).A-2

B. Fixed Load Case

Figure A.2 shows also the load displacement diagram for the fixed

load case. Line OP1 corresponds to the response of the body containing

11the crack of length "a". Line OP' I1 corresponds to the response of the

body containing a crack of length (a + da). As the crack increases, the

displacement at the point of application of the load increases from i

to a2 where:
U2

6 =6 + d6 (A-13)
2 1
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The change in strain energy may be expressed, as before,

dV = i d)I
da 2 da

or

dV Ip
d = d 6) (A-14)
da 2 da

since P is a constant.

The work done by outside force as the crack extends from "a"

(a + da) is:

dW d6 d- =  d~a"(A-1 5)
da - da*

Substitution of equation A.14 and equation A.15 into equation A.3 produces:

dU d _ 1 dd 1 dd

G dud P p -6 =- p V (A-16)da da 2 da 2 da

To obtain G in terms of compliance, we have in this case:

6M = P = constant. (A-I7)

Rearranging,

6 P6 - (A-I S)
M

A-5
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and differentiating:

d6 p d

da da

Substituting equation A.18 into equation A.16 produces:

G = p d (l/M). (A-19)
2 da

The expression of G in equation A.19 (fixed load) is identical to

that of equation A.12 (fixed displacement). We conclude, therefore, the

potential energy release rate due to a crack extension is the same for

both the fixed load case and fixed displacement case.
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p

d6

/ a da

Figure A-1 Schematic Diagram of a Cracked Body under Uniaxial I.coad

p

2

0

FigurE A-2 Typical Load -DI~splac emenft Diagram fni- Cracked Body.
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Appendix B: The Finite Element Scheme

The concept of the strain energy release rate as a fracture growth cri-

terion for brittle cracks in elastic solids is one of long standing. In 1920,

Griffith [56] attributed the ultimate tensile strength of glass to the fact that

crack-like surface flaws exist in glass. He reasoned that the worst flaw pro-

pagates unstably when the rate of decrease of the strain energy becomes equal to

or greater than the rate of increase of the surface :-nergy during crack exten-

sion. Let U be the strain energy and S be the surface energy in the crack tip

region. Then the Griffith postulation states that an initial flaw of size a

will grow unstably if

aU > S (B-i)
aa a

Note that U is a quantity that depends on the stress field near the flaw as

a r

well as the geometry of the flaw. On the other hand, the quan'ity S depends only
oa

on the material under consideration, and thus is a material property. The former,

commonly referred to as the available energy release rate, is denoted by G. The

latter, referred to as the critical energy release rate, is denoted by C . Thus,c

equation (B-l) may be rewritten as

G > G (B-2)
- c

From an elastic energy balance consideration, Irwin [181 showed that the

elastic strain energy released during a small incremental crack extension is

equal to the work done in closing the crack to its original length. Let Aa re-

present an infinitesimal crack extension from the initial size of a as shown in

Figure (B-i). Let Au be the relative displacements between the mating crack

surfaces along Aa when the crack is open as in Figure (B-l)b. Let a be the nor-

mal and shearing surface stress distribution along Aa when the crack is closed

as in Figure (B-l)c. Then the work done per unit thickness to close the crack

extension may be expressed by
rAa

AW = 1/2 a o Au da (B-3)

JO
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Thus, by means of Irwin's crack closure equivalence, the available energy re-

lease rate G, for a crack of size a, is expressed by

Aa

lim 1 - da (G = Aa-+O 2Aa O da (B-4)

Substituting the components of the surface stresses u and the relative displace-

ments Au into the equation (B-4) yields G in component form as

lim 1 rAa

I AaO 2Aa 0 Ay

lim r rAa
GII Aa-*O 2Aa J y Au da

Gi1 lim 1 Aa
= lim 1 r Aw da (B-5)

Aa-*O 2AaJ 0  yz

where GI, GII, and G II denote the mode I, mode II, and mode III crack exten-

sion modes respectively, and

G = G + G + G 1 1  (B-6)

As illustrated in Figure (B-2), mode I crack extension refers to an opening

action, while a mode II crack refers to a sliding action, and mode III is an anti-

plane shearing action.

In order to evaluate the integrals of (B-4) or (B-5), the exact stress field

near the crack tip must be determined. But, it is well known that the distri-

bution of stresses in the neighborhood of a sharp crack is singular in nature

(57, 581. One approach to determine the singular stress field is to introduce

the well-known "stress intensity factor." For example, Sneddon [58] solved a

plane problem that gives the stress field in the region of a "penny shaped" crack

B-2



undergoing mode I action as

K I  3W 30--

0 - cos - + sin sin-

K a Le . 3T
a V -- rO - sin- sin

K -
Xy= I L i o 3e (B-7)

2')KI  a
a =v(ax +aO) =~ COS2

z y 2 -r

T T =0.
yz xz

Here, KI is the mode I stress intensity factor that is a measure of the strength

of the singularity. Similar stress intensity factors may be obtained for mode II

and mode III crack extension actions.

Since the energy release rate G is computed from the crack tip stress field

by equation (B-5), the relationship between the strain energy release rate and

the stress intensity factor for a linear elastic isotropic material can be es-

tablished. For example, under a plane strain condition, G is given by [181.

02

G = V [K1 2 + K1 1 2] (B-8)

where KII is the mode II stress intensity factor.

For initially cracked, layered anisotropic materials, such as composite

laminates, an explicit relationship between K and G is generally not available.

Moreover, in a generally anisotropic solid, the mode I and mode II cracking

actions are mutually coupled.

B-3



The methodology of the crack closure and stress intensity factor approaches

requires a detailed knowledge of the stress distribution in Lie vicillity of the

crack tip. In the case of composite laminates, analytica] solutions of the stress

distribution in the region of a crack tip are generally 1 1ot availahle. Hence,

numerical solution techniques, such as the finite element method, are often

utilized.

A numerical technique to calculate the strain energy release rate has been

presented by Rybicki and Kanninen [27]. Their approach involves a finite element

solution of Irwin's crack closure integral given in (B-5). In the finite element

representation, the continuous stress and displacement fields of the solid are

approximated by the nodal forces and displacements respectively. Figure (B-3)

illustrates the finite element representation of a crack tip region. Here, a

crack of length a is shown with the crack tip at node c. The finite element

solution determines the displacement components (u, v, w) of the crack tip node c,
c

under a prescribed loading. An incremental crack extension La is introduced by

replacing the crack tip node c with two separate nodes f ani g as shown in

Figure (B-3)b. With this new crack geometry taken into account, the finite

element solution for the nodal displacements (u, v, w)f and (u, v, w) are found

for nodes f and g respectively. The crack extension is closed by applying equal

and opposite forces at nodes f and g such that their common displacements match

the displacements found earlier for node c.

The work required to close the crack extension is approximated by

AW - [Fx(uf-Ug) + Fy(Vf-Vg) + Fz(Wf-Wg)]/2 (B-9)

where F9 ,Fy and F are the components of the nodal forces required to close

x z

nodes f and g together. Thus, the energy release rates for the three crack ex-

tension modes are approximated by

B-4K. ,



GI (v -v )/2Aa

GII - F (u f-u )/2Aa (B-i0)

GII - F z (wfWg)/2Aa

The method presented here does not require that the stresses be calculated

because the stress and strain fields are approximated by the nodal forces and

displacements in the finite element solution. Rybicki and Kanninen applied con-

ventional constant strain finite elements to the solution of three fracture

problems: the double cantilever beam specimens; a finite strip containing a

central crack; and a bolt fastened double lap joint containing radial cracks.

They reported that a coarse grid in the crack tip region was sufficient for a

good comparison between their example problems and reference solutions.

In this analysis, both mechanical and thermal loadings may be considered.

The mechanical load is uniaxial tension, and the thermal loading is due to the

curing process. The thermal load is taken in the form of a uniform temperature

change AT from the curing temperature to the ambient temperature [59]. Within

the context of linear elasticity, the mechanical and thermal loading cases may

be solved independently under unit load conditions and then superimposed to

obtain the solution for a combined load condition. It is convenient to choose

the mechanical load as the far field laminate strain e equal to one micorstrain

(1 x 10-6). This represents a "fixed-grip" load condition. The thermal load AT

is chosen as minus one degree Fahrenheit for convenience. Let f and d be the
m m

nodal forces and displacements respectively, due to the unit mechanical strain

load as determined by the finite element solution.

Similarly, let fT and dT be the nodal forces and displacements respectively,

due to the unit thermal load of AT = 1F. Then, under a combined loading of c

and AT, the nodal forces and displacements can be expressed as

B-5
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f fme + fTAT

(B-l1)

d = d e + d ATm T

To calculate the strain energy release rate it is necessary to introduce

a crack in the finite element network as described above. Referring to Figure

(B-3), let D be the relative displacements of nodes f and g when the crack is

extended to a + Aa defined as

D u f = U (B-12)

D may be represented in terms of a combined mechanical and thermal load of e

and AT as

D = D e + D TAT (B-13)

where Dm and DT are the relative displacements associated with the unit mechan-

ical and unit thermal loadings respectively. Let F be the nodal forces required

to close nodes f and s together. F may be expressed in terms of a combined load

of e and AT as

F = F e + F AT (B-14)
m T

4 where F and Ft are the nodal closing forces associated with the unit mechanical Pmt

and unit thermal loadings respectively. The energy release rate per unit thick-

ness may then be expressed as

1 P

G (Fo e + FTAT) (Di e + DTAT) (B-15)
Usa m T m T
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where Aa is the incremental crack extension as shown in Figure (B-3). Equation

(B-15) may be rewritten in the form

G = t[C (e)2 + CT(AT)2 + Ce(e)(AT)] (B-16)

where

C = (Fm D m)/2 A at

CT (FT DT)/2Aat (B-17)

CeT =(Fm DT + FT Dm)/2Aat

The parameter t, the thickness of a single ply, is introduced so that Ce, C
e9 T

and CeT are independent of the ply thickness. Note that, for a given geometry

and material properties, equations (B-17) are a function of the non-demensional

crack length a/t and are independent of the applied loading. Thus, the functions

Cc CT, and C are characteristic for a particular crack growth problem and areTo eT

hereafter denoted "shape functions." Ce, C and CeT are associated with the

mechanical, thermal, and mixed load conditions respectively. Ce has units of
2

energy per unit area, CT has units of energy per unit area per (AT) , and CeT

has units of energy per unit area per AT. 8

The mechanical load shape function C may be expressed in terms of the x,
e

y, z components of F and D as
m m

CeI = (Fy " Dmy)/2Aat

Ce*II= (F " D mx)/2Aat (B-18)

CI11  " (Fmz" Dz)/2Aat

B-7



The subscripts I, TI, and III are identified with the mode I, mode II and

mode III crack extension modes respectively. Similar expressions may be ob-

tained for the thermal and mixed load shape functions. Thus, the mode I,

mode II, and mode III components of the energy release rate may be expressed

in terms of the shape function as

G I - t[uGe (e) 2 + C :I(AT) 2 + CeI()A)2 2GI e t!e + j(A) CeTI(e)(AT)]

G - t[C ei(e)2 + CT1 (AT) 2 + CTII(e)(AT)] (B-20)

GIII - t[CeII(e)2 + CTIII(AT)2 + CeTIII (e)(AT)]

Thus, a methodology has been presented to superimpose the energy release

rate for two load conditions. This is accomplished using shape functions that

are characteristic for a given crack geometry and material. These shape

functions are calculated from unit load finite element solutions for each

loading condition. The mode I, II and III components of the energy release

rate are explicitly calculated.

The finite eleme. t code has been installed for use on the HP-1O00 computer

system. Proper operation of the code has been confirmed by running several

benchmark programs and comparing them with existing solutions [25]. In

order to provide further confidence in both the energy release rate approach

and the finite element computation, a comparison has been made for the case

of transverse cracking in the (02/9 02)s laminate at the onset load between

the G calculated by the finite element code and G as calculated from a refer-

ence solution using the stress intensity factor K I. The reference problem

and functional form of the shape function F are shown in Figure (B-4). For

this comparison, only the mechanical load will be considered, i.e., the finite

Alement computation produces
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G t C e 2

e

The value of G using the stress intensity factor approach is obtained from

the relation

K
2

E

where E is taken as the modulus of the 900 -layer (E ) and where K i3 calcu-

lated using

EL

ET

and a = 6.44 ksi,

which is the stress in the 90*-layer corresponding to the laminate transverse

crack initiation strain of 4027 pin/in. Results of these calculations e

shown in Figure (B-5). As can be seen, the agreement in both the magnitude

and the shape of the two functions is quite good.

In the preceding example, the comparison was not exact largely because

the properties of the laminate did not match those required by the exact

solution. As a final comparison, a transversely isotropic laminate was

analyzed. Properties were chosen to match exactly those required by the

exact solution. The value of 6 was taken as 5. Results are shown in Figure

B.6, where it is seen that the results are nearly identical.
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Appendix C

Tables of Experimental Data
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TABLE C-1 CYCLE-DAMAGE DATA FOR (02/902)2 2s

Max. Stress af = 38 ksi Max. Stress af = 43 ksi Max. Stress af = 53 ksi

Number of Number of Number of

Transverse Transverse Transverse

Cycles -Cracks Cycles Cracks Cycles Cracks r

10 1 200 2 10 3

100 2 800 4 60 8

400 4 4,000 12 300 20

1,000 9 20,000 35 2,000 65

3,000 19 100,000 59 8,000 86

10,000 40 300,000 72 40,000 98

40,000 52 200,000 117

250,000 70
200 2
800 5 10 4

2,000 2 4,000 17 60 5
10,000 11 20,000 40 300 11 r
40,000 23 100,000 74 2,000 46

200,000 42 300,000 82 8,000 73
1,000,000 67 1,000,000 97 40,000 104

200,000 120

10,000 1 80 4

40,000 13 400 13 10 4

200,000 32 2,000 35 60 7

10,000 74 300 14
40,000 94 2,000 37
200,000 109 8,000 66

1,000,000 115 30,000 90 V

200,000 118

80 2
400 3 10 6

2,000 6 60 9

3,000 3 10,000 20 300 18

10,000 10 40,000 47 2,000 50

40,000 24 200,000 68 8,000 78

200,000 42 1,000,000 83 30,000 96

1,000,000 62 200,000 123

C-2
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TABLE C-2 CYCLE-DAMAGE DATA FOR (02/903)s

Max. Stress 0 f = 26 ksi Max. Stress 0 f = 30 ksi Max. Stress f= 38 ksi

Number of Number of Number of
Transverse Transverse Transverse

Cycles Cracks Cycles Cracks Cycles Cracks

100 1 400 1 10 3
500 1 2,000 3 60 5

3,000 2 10,000 17 300 7
10,000 4 40,000 23 2,000 31
50,000 9 200,000 37 10,000 53

300,000 16 1,000,000 57 40,000 68
1,000,000 16 200,000 78

1,000,000 102
3,000 2 10,000 4

10,000 10 40,000 12
50,000 14 200,000 24 10 2
300,000 21 1,000,000 45 60 6

1,000,000 28 300 17
2,000 40

2,000 2 10,000 66

3,000 3 10,000 14 40,000 83
10,000 8 40,000 27 200,000 89

50,000 15 200,000 33 1,000,000 112
300,000 26

2,000 2 10 2

50,000 8 10,000 20 60 4
300,000 11 40,000 35 300 7

200,000 50 2,000 35
10,000 53
40,000 69

200,000 92

10 2
60 3

300 12

2,000 32
10,000 51
40,000 64
200,000 85
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TABLE C-3 CYCLE-DAMAGE DATA FOR (+25/90)

Max. Stress f = 29 ksi Max. Stress f= 33 ksi Max. Stress 0 f 40 ksi

-Cycles Delamination Cycles Delamination Cycles Delamination

6,000 0 3,000 0 500 4.1

50,000 4.1 10,000 7 2,000 10.4

400,000 10.4 10,000 44

500,000 41.6 12,000 48.9

550,000 45.8 3,000 0 12,020 100
10,000 6.3
80,000 24

6,000 0 100,000 41 300 4.1

100,000 12.5 1,000 8.3
400,000 21 4,000 16.6
500,000 29.2 5,000 0 8,000 21.0
550,000 30.0 20,000 2 11,000 33.3
600,000 33.0 60,000 31.3 13,000 44.0

90,000 35.4 13,920 100

68,000 4.1 105,000 100
100,000 6.25

300,000 12.5 50 0
500,000 13.3 10,000 0 1,050 6.25

600,000 16 50,000 12.5 6,000 18.75

800,000 33 100,000 16.6 7,000 25

900,000 42.7 160,000 33.3 9,000 27.1
167,000 100 14,700 54.1

15,110 100

50 0

2,000 2
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TABLE C-4 CYCLE-DAMAGE DATA FOR (+25/90 )

Maximum Stress af = 22 ksi Maximum Stress af 27 ksi

Number of Number of
Transverse % Transverse %

Cycles Cracks Delamination Cycles Cracks Delamination

5,000 4 0 100 1 0
10,000 10 0 400 2 0
30,000 37 0 1,000 9 0
50,000 49 0 5,000 32 0
80,000 51 6.3 10,000 52 0
200,000 56 8.3 20,000 75 4.1
400,000 69 8.3 30,000 81 10.4
600,000 75 12.6 50,000 86 16.6

800,000 81 16.7 80,000 100
1,000,000 88 25.2

100 2 0
2,000 3 0 500 8 0
6,000 10 0 2,000 39 0

10,000 11 0 14,650 73 0
40,000 21 4.1 15,000 74 0
70,000 35 6.3 20,000 79 4.1

100,000 49 8.3 30,000 90 8.3
300,000 64 10.4 50,000 97 12.5
400,000 69 18.75 100,000 104 25.0
600,000 70 23 150,000 110 27.0
800,000 74 29 153,850 100

1,000,000 81 54
100 16 0

6,000 1 0 600 29 0
10,000 4 0 2,000 53 4
50,000 42 0 6,000 64 6.3
80,000 46 0 10,000 70 10
100,000 49 0 15,000 75 18.8
200,000 50 10.4 25,000 86 27
400,000 74 20.8
410,000 75 20.8

4 ' 600,000 76 20.8
800,000 79 22

1,000,000 82 25.2

p
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TABLE C-4 CYCLE-DAMAGE DATA FOR (+25/902) - (continued)

2 s

Maximum Stress 0 f = 31 ksi

Number of
Transverse %

Cycles Cracks Delamination

1 12 0
10 24 0

100 42 0
600 56 0

2,000 68 8.3
4,600 90 23
7,000 92 29
8,500 100 33.3
10,000 113 37.5

1 6 0
10 8 0

100 20 0
1,000 53 0

3,000 81 11.3
5,000 85 21.3

7,910 100

1 17 0
10 21 0

100 34 6.0
1,000 56 8.3
2,000 65 12.5

5,000 91 12.5
8,000 96 29.1
10,000 98 31.25
15,000 101 42.6
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TABLE C-5 CYCLE-DAMAGE DATA FOR (+25/903)
3 3s

Maximum Stress af = 19 ksi Maximum Stress f = 22 ksi

Number of Number of
Transverse % Transverse %

Cycles Cracks Delamination Cycles Cracks Delamination

1,000 - 0 1,000 2 0

5,000 2 0 6,000 2i 0

8,000 4 0 30,000 33 4.2
10,000 7 0 100,000 45 10.4
30,000 17 0 174,480 100
60,000 27 6.3

2,000 2 0
500 1 0 8,000 8 0

2,000 1 0 40,000 35 4.1
5,000 4 0 80,000 44 8.3
8,000 6 0 174,770 100
10,000 7 0
50,000 16 4.1

100,000 22 6.3 60 1 0
400,000 32 14.5 400 1 0

1,149,000 53 25 1,000 2 0

5,000 12 0
20,000 18 4.1

2,000 1 0 150,000 50 12.5
4,000 2 0 200,000 73 18.8
8,000 3 0 250,000 75 27
10,000 3 0 280,000 75 62.5
60,000 8 2.1 280,010 100

100,000 8 6.3

1,320,120 34 16.6
1,851,520 44 37.5

4',
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TABLE C-5 CYCLE-DAMAGE DATA FOR (+25/90 3) - (continued)

Maximum Stress f = 25 ksi

Number of
Transverse %

Cycles Cracks Delamination

1 12 -
i0 12 0

100 16 0

1,000 44 4.1
4,000 52 4.1
11,000 64 12.5

1 1 0
10 1 0

100 2 0
800 20 0 r

6,100 44 0
20,000 60 8.3
40,000 63 10.4
50,000 84 25

60,000 87 29.1
67,530 100

1 4 0

10 4 0
100 8 0

1,000 29 0

5,000 51 0
10,000 58 6.25
20,000 74 12.5

40,000 87 31.25
41,570 100
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TABLE C-6 CUMULATIVE DAMAGE TEST DATA

Laminate Maximum Fatigue Stress, Cycles ( Load Number of Transverse
ksi Cracks

(O2/903)s  26 10,000 6
30 15,000 35

30,000 42

26 100,000 47

26 10,000 6
30 30,000 34
26 100,000 39

26 10,000 6

30 30,000 36
26 100,000 37

26 10,000 7
30 100 7

1,000 8

5,000 20
10,000 23

15,000 23
20,000 24
25,000 27
30,000 28

26 100,000 31

15 100,000 0
50 1 26

10 44
100 63

1,000 94
10,000 115
100,000 121
500,000 121

1,000,000 124

15 100,000 1
* 50 1 36

10 48
100 69

1,000 88
10,000 108

100,000 122
1,000,000 124 0

------------------------------------------------------------------------------------------

Laminate Maximum Fatigue Stress, Cycles (a Load
ksi Delamination

(+25/90)s  20 100,000 0
* 50 1 9.3 9

5 9.3
10 9.3
20 10.7
100 13.3

C-) 182 100
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TABLE C-6 CUMULATIVE DAMAGE TEST DATA (cont'd)

Laminate Maximum Fatigue Stress Cycles @ Load Number of
ksi Transverse Cracks F

(±25/90) 20 100,000 0
30 50,000 5.3

80,000 8.0
200,000 17.3
300,000 21.3

----------------------------------------------------------------------------------

40 1,000 5.3
50 1 8.0

10 9.3
30 12.0

50 13.3
70 13.3
90 14.7

100 16.0
-----------------------------------------------------------------------------------

40 1,000 9.3S50 1 12.0 r

10 12.0
30 14.7

-----------------------------------------------------------------------------------

20 100,000 0
50 1 8.0

10 10.7
40 13.3

100 14.7
150 17.3
200 20.0
300 29.3

20 300,000 0
40 50 0

100 1.3
500 4.0

* 30 100,000 25.3 '

200,000 33.3 -

- -------------------------------------------------------------

50 1 10.7
10 12.0

30 100 12.0
1,000 12.7

10,000 13.3
100,000 16.0
200,000 22.7
300,000 29.3
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TABLE C-6 CUMULATIVE DAMAGE TEST DATA (cont'd)

. Lamindue Maximum Fatigue Stress Cycles @ Load Number of
ksi Transverse Cracks

(±25/90) 40 1,000 14.7
50 1 18.7

11 20.0
30 21.3
50 24.0

50 1 5.1
10 6.7

30 100 6.7

1,000 6.7
10,000 8.0

100,000 16.0
200,000 20.0
300,000 22.7

50
30 2G0 6.7

1,000 6.7
10,000 6.7

100,000 12.0
200,000 17.3

----------------------------------------------------------- ------- -- ----------
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TABLE C-6 CUMULATIVE DAMAGE TEST DATA (cont'd)

Laminate Maximum Fatigue Stress Cycles @ Load Number of
ksi Transverse Cracks

(02/902)s 60 1 36

100 72
1,000 96
10,000 126

100,000 150

80 1 150
100 153

1,000 153

10,000 161
100,000 162

50 1,000 84
70 1,000 138
50 100,000 144

80 1 113

10 120
100 133

60 10 138
100 139

1,000 140
10,000 149

100,000 162

60 1 36

100 81
1,000 107

10,000 139
100,000 154

80 1 154
100 155

1,000 157
10,000 161

100,000 162

80 1 95
10 111

100 129
60 10 129

100 129

1,000 131
10,000 139
100,000 150
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TABLE C-6 CUMULATIVE DAMAGE TEST DATA (cont'd)

Laminate Maximum Fatigue Stress Cycles @ Load Number of
ksi Transverse Cracks

(02/902) s  60 1 51
100 95

1,000 117
10,000 138

100,000 155

80 1 156
100 157

1,000 157
10,000 161

100,000 166

80 1 107
10 112

100 138

60 10 139
100 139

1,000 139
10,000 146

100,000 158

400,000 166

50 1,000 50
70 1,000 127

50 100,000 135

50 1,000 61

70 1,000 128
50 100,000 135

p
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TABLE C-6 CUMULATIVE DAMAGE TEST DATA (cont'd)

Laminate Maximum Fatigue Stress Cycles @ Load Number of
ksi Transverse Cratks

(02/903) 80 1 128
10 136

40 1 136
10 136

100 136
10,000 136

100,000 138
1,000,000 138

26 100,000 19
30 200,000 46 r

80 1 123
10 127

40 1 129
10 129 r

100 129
10,000 129
20,000 129

1,000,000 134

II
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